使用消息队列的 10 个理由

简介: 过去几年中,我们一直在使用、构建和宣传消息队列,我们认为它们是很令人敬畏的,这也不是什么秘密。我们相信对任何架构或应用来说,消息队列都是一个至关重要的组件,下面是十个理由:1. 解耦在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。

过去几年中,我们一直在使用、构建和宣传消息队列,我们认为它们是很令人敬畏的,这也不是什么秘密。我们相信对任何架构或应用来说,消息队列都是一个至关重要的组件,下面是十个理由:

1. 解耦

在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。消息队列在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口。这允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

2. 冗余

有时在处理数据的时候处理过程会失败。除非数据被持久化,否则将永远丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。在被许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理过程明确的指出该消息已经被处理完毕,确保你的数据被安全的保存直到你使用完毕。

3. 扩展性

因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的;只要另外增加处理过程即可。不需要改变代码、不需要调节参数。扩展就像调大电力按钮一样简单。

4. 灵活性 & 峰值处理能力

当你的应用上了Hacker News的首页,你将发现访问流量攀升到一个不同寻常的水平。在访问量剧增的情况下,你的应用仍然需要继续发挥作用,但是这样的突发流量并不常见;如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住增长的访问压力,而不是因为超出负荷的请求而完全崩溃。请查看我们关于峰值处理能力的博客文章了解更多此方面的信息。

5. 可恢复性

当体系的一部分组件失效,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。而这种允许重试或者延后处理请求的能力通常是造就一个略感不便的用户和一个沮丧透顶的用户之间的区别。

6. 送达保证

消息队列提供的冗余机制保证了消息能被实际的处理,只要一个进程读取了该队列即可。在此基础上,IronMQ提供了一个"只送达一次"保证。无论有多少进程在从队列中领取数据,每一个消息只能被处理一次。这之所以成为可能,是因为获取一个消息只是"预定"了这个消息,暂时把它移出了队列。除非客户端明确的表示已经处理完了这个消息,否则这个消息会被放回队列中去,在一段可配置的时间之后可再次被处理。

7.排序保证

在许多情况下,数据处理的顺序都很重要。消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。IronMO保证消息浆糊通过FIFO(先进先出)的顺序来处理,因此消息在队列中的位置就是从队列中检索他们的位置。

8.缓冲

在任何重要的系统中,都会有需要不同的处理时间的元素。例如,加载一张图片比应用过滤器花费更少的时间。消息队列通过一个缓冲层来帮助任务最高效率的执行--写入队列的处理会尽可能的快速,而不受从队列读的预备处理的约束。该缓冲有助于控制和优化数据流经过系统的速度。

9. 理解数据流

在一个分布式系统里,要得到一个关于用户操作会用多长时间及其原因的总体印象,是个巨大的挑战。消息系列通过消息被处理的频率,来方便的辅助确定那些表现不佳的处理过程或领域,这些地方的数据流都不够优化。

10. 异步通信

很多时候,你不想也不需要立即处理消息。消息队列提供了异步处理机制,允许你把一个消息放入队列,但并不立即处理它。你想向队列中放入多少消息就放多少,然后在你乐意的时候再去处理它们。

我们相信上述十个原因,使得消息队列成为在进程或应用之间进行通信的最好形式。我们已经花费了一年时间来创建和学习IronMQ,我们的客户也通过消息队列完成了许多不可思议的事情。队列是创建强大的分布式应用的关键,它可以利用云技术所提供的所有强大能量。

如果现在你想要开始使用一个高效的、可靠的、托管的消息队列,下载IronMQ吧。如果你想联系我们的工程师,咨询如何把队列集成到你的应用中去,他们随时欢迎你的访问:get.iron.io/chat



目录
相关文章
|
存储 Java Linux
Jenkins+Gitlab+Docker(Dockerfile)部署
Jenkins+Gitlab+Docker(Dockerfile)部署
381 1
|
存储 移动开发 前端开发
【第35期】一文学会React-Router开发权限
【第35期】一文学会React-Router开发权限
483 0
|
2月前
|
SQL 存储 关系型数据库
MySQL恢复之Binlog格式详解
本文详解MySQL binlog日志的格式与闪回恢复机制,涵盖误操作数据恢复的核心原理、注意事项及实操步骤。重点解析ROW格式下的各类binlog事件(如Format_desc_event、Query_event、Table_map_event、Write/Update/Delete_rows_event等)的结构与作用,并结合实际场景演示如何通过mysqlbinlog工具解析日志、生成反向SQL实现精准恢复。内容深入浅出,适用于DBA及开发人员提升数据安全保障能力。
176 0
MySQL恢复之Binlog格式详解
|
2月前
|
人工智能 数据可视化 安全
2025年主流测试用例管理平台对比分析与最佳实践
文章围绕2025年测试用例管理平台展开,介绍行业呈SaaS化与AI赋能趋势,分析主流平台类型。对比优测、TestRail、禅道等平台,阐述各平台特点及适用场景。分享金融、跨境电商等行业最佳实践,还给出平台选择建议、SaaS与私有化部署差异及AI功能效果等内容。
|
7月前
|
人工智能 供应链 安全
AI驱动攻防升级,API安全走到关键档口
在AI与数字化转型加速背景下,API已成为企业连接内外业务的核心枢纽,但其面临的安全威胁也日益严峻。瑞数信息发布的《API安全趋势报告》指出,2024年API攻击流量同比增长162%,占所有网络攻击的78%。攻击呈现规模化、智能化、链式扩散等新特征,传统防护手段已难应对。报告建议企业构建覆盖API全生命周期的安全体系,强化资产梳理、访问控制、LLM防护、供应链管控等七大能力,提升动态防御水平,保障AI时代下的业务安全与稳定。
253 0
|
3月前
|
人工智能 自然语言处理 搜索推荐
2025年11月,中国数字人平台生态优势与应用选择
数字人企业正以全场景降本增效、品牌赋能、体验升级、数据驱动、风险控制与技术融合六大优势,重塑商业生态。2025年,AI驱动的数字人已成企业转型核心,实现24小时运营、精准营销与智能交互,助力品牌高效增长与产业智能化升级。
|
Web App开发 存储 JavaScript
Node.js概述
Node.js概述
331 3
|
5月前
|
前端开发 NoSQL 关系型数据库
如何开发研发项目管理中的需求管理板块?(附架构图+流程图+代码参考)
本文探讨了中小企业在研发或产品工作中常见的需求管理问题,如需求记录混乱、交付靠口头约定、变更无追踪等。通过系统化的需求管理,可实现“谁在做什么、为什么做、何时完成、谁验收”的可视化与责任归属,减少沟通成本,提升效率。文章详细介绍了需求管理的核心功能模块(如需求看板、处理流程、研发日报)、系统架构设计、前后端实现参考、开发技巧与落地建议,以及上线后的运营指标与实施路线图。最终目标是将松散的流程规范化、可追踪、可复用,助力企业构建高效的研发项目管理体系。
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进-损失函数】SlideLoss损失函数,解决样本不平衡问题
YOLO-FaceV2是基于YOLOv5的实时人脸检测模型,采用RFE模块增强小人脸检测,NWD损失处理定位偏差,SEAM注意力模块应对遮挡,Slide Loss解决样本不平衡,提升对难样本的关注。在WiderFace数据集上超越YOLO系列。论文和代码已公开。Slide Loss通过IoU加权,优化边界样本,提高模型性能。