Spark-项目中分析日志的核心代码

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 代码LogRecord 类:case class LogRecord ( clientIpAddress: String, rfc1413ClientIdentity: String, remoteUser: S...

代码

LogRecord 类:

case class LogRecord (
    clientIpAddress: String,      
    rfc1413ClientIdentity: String,   
    remoteUser: String,             `
    dateTime: String,              //[day/month/year:hour:minute:second zone]
    request: String,                 
    httpStatusCode: String,          
    bytesSent: String,              
    referer: String,                
    userAgent: String                
)

LogParser 解析类

import java.util.regex.Pattern
import java.text.SimpleDateFormat
import java.util.Locale
import scala.util.control.Exception._
import java.util.regex.Matcher
import scala.util.{Try, Success, Failure}

@SerialVersionUID(100L)
class LogParser extends Serializable {

    private val ddd = "\\d{1,3}"                      
    private val ip = s"($ddd\\.$ddd\\.$ddd\\.$ddd)?"  
    private val client = "(\\S+)"                     
    private val user = "(\\S+)"
    private val dateTime = "(\\[.+?\\])"              
    private val request = "\"(.*?)\""                 
    private val status = "(\\d{3})"
    private val bytes = "(\\S+)"                      
    private val referer = "\"(.*?)\""
    private val agent = "\"(.*?)\""
    private val regex = s"$ip $client $user $dateTime $request $status $bytes $referer $agent"
    private val p = Pattern.compile(regex)


    def parseRecord(record: String): Option[AccessLogRecord] = {
        val matcher = p.matcher(record)
        if (matcher.find) {
            Some(buildAccessLogRecord(matcher))
        } else {
            None
        }
    }

    def parseRecordReturningNullObjectOnFailure(record: String): AccessLogRecord = {
        val matcher = p.matcher(record)
        if (matcher.find) {
            buildAccessLogRecord(matcher)
        } else {
            AccessLogParser.nullObjectAccessLogRecord
        }
    }

    private def buildAccessLogRecord(matcher: Matcher) = {
        AccessLogRecord(
            matcher.group(1),
            matcher.group(2),
            matcher.group(3),
            matcher.group(4),
            matcher.group(5),
            matcher.group(6),
            matcher.group(7),
            matcher.group(8),
            matcher.group(9))
    }
}

/**
 * 例子:
 * 94.102.63.11 - - [21/Jul/2009:02:48:13 -0700] "GET / HTTP/1.1" 200 18209 "http://acme.com/foo.php" "Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)"
 */
object AccessLogParser {

    val nullObjectAccessLogRecord = AccessLogRecord("", "", "", "", "", "", "", "", "")

    def parseRequestField(request: String): Option[Tuple3[String, String, String]] = {
        val arr = request.split(" ")
        if (arr.size == 3) Some((arr(0), arr(1), arr(2))) else None
    }
    def parseDateField(field: String): Option[java.util.Date] = {
        val dateRegex = "\\[(.*?) .+]"
        val datePattern = Pattern.compile(dateRegex)
        val dateMatcher = datePattern.matcher(field)
        if (dateMatcher.find) {
                val dateString = dateMatcher.group(1)
                println("***** DATE STRING" + dateString)
                // HH is 0-23; kk is 1-24
                val dateFormat = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss", Locale.ENGLISH)
                allCatch.opt(dateFormat.parse(dateString))  // return Option[Date]
            } else {
            None
        }
    }

}

总结

日志分析是经常做的事情,大数据下的日志分析也是一个常用技术。

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
目录
相关文章
|
27天前
|
监控 安全 搜索推荐
使用EventLog Analyzer进行日志取证分析
EventLog Analyzer助力企业通过集中采集、归档与分析系统日志及syslog,快速构建“数字犯罪现场”,精准追溯安全事件根源。其强大搜索功能可秒级定位入侵时间、人员与路径,生成合规与取证报表,确保日志安全防篡改,大幅提升调查效率,为执法提供有力证据支持。
|
6月前
|
存储 运维 监控
SelectDB 实现日志高效存储与实时分析,完成任务可领取积分、餐具套装/水杯/帆布包!
SelectDB 实现日志高效存储与实时分析,完成任务可领取积分、餐具套装/水杯/帆布包!
|
3月前
|
监控 安全 NoSQL
【DevOps】Logstash详解:高效日志管理与分析工具
Logstash是ELK Stack核心组件之一,具备强大的日志收集、处理与转发能力。它支持多种数据来源,提供灵活的过滤、转换机制,并可通过插件扩展功能,广泛应用于系统日志分析、性能优化及安全合规等领域,是现代日志管理的关键工具。
459 0
|
5月前
|
Java 应用服务中间件 Linux
Tomcat运行日志字符错乱/项目启动时控制台日志乱码问题
总结: 通过以上几种方法,概括如下:指定编码格式、设置JVM的文件编码、修改控制台输出编码、修正JSP页面编码和设置过滤器。遵循这些步骤,你可以依次排查和解决Tomcat运行日志字符错乱及项目启动时控制台日志乱码问题。希望这些建议能对你的问题提供有效的解决方案。
979 16
|
5月前
|
自然语言处理 监控 安全
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
阿里云可观测官方发布了Observable MCP Server,提供了一系列访问阿里云可观测各产品的工具能力,包含阿里云日志服务SLS、阿里云应用实时监控服务ARMS等,支持用户通过自然语言形式查询
570 0
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
|
4月前
|
人工智能 运维 监控
Aipy实战:分析apache2日志中的网站攻击痕迹
Apache2日志系统灵活且信息全面,但安全分析、实时分析和合规性审计存在较高技术门槛。为降低难度,可借助AI工具如aipy高效分析日志,快速发现攻击痕迹并提供反制措施。通过结合AI与学习技术知识,新手运维人员能更轻松掌握复杂日志分析任务,提升工作效率与技能水平。
|
5月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
644 54
|
11月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
3053 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
10月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
270 9

热门文章

最新文章