深度卷积对抗生成网络(DCGAN)实战

简介: 本文作者通过一个实战小例子介绍了什么是GANS,如何使用TensorFlow来实现GANS,对于想要了解GANS的学习者来说,这篇文章绝对入门。

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud


生成式对抗网络(GANs)的概念在四年前由Ian Goodfellow创造。古德费洛(Goodfellow)认为鉴别器(Discriminator)是艺术评论家而相对的艺术家则是生成器(Generator),它们两个就组成了GAN。艺术评论家(Discriminator)看着一幅图像,试图确定它是真的还是伪造的。一个想欺骗艺术评论家的艺术家(Generator)试图制造一个看起来尽可能真实的伪造图像。这两种模式相互战斗” ,鉴别器使用生成器的输出作为训练数据,并且生成器也可以从鉴别器获得反馈。在这个过程中,我们想要的模型正在变得更强大,GAN也可以基于一定数量的已知输入数据(在这种情况下是图像)生成新的复杂数据。
创建一个GAN可能听起来很困难,但,在本教程中,我们将使用TensorFlow来构建一个简单的能够生成人脸图像的GAN
1.深度卷积对抗生成网络(DCGAN)的架构
在本教程中,我们不是试图模仿简单的数字数据,而是我们试图模仿一个图像,甚至它可以去欺骗一个人。生成器将随机生成的噪声向量作为输入数据,然后使用称为反卷积的技术将数据转换为图像。
鉴别器是经典的卷积神经网络,其分类真实和假图像。

75da164107fd4c943e9677b1ba2fe437c8fac198
我们将使用原来的非深度卷积生成对抗网络的无监督表示学习DCGAN体系结构它由四个卷积层作为鉴别器,四个解卷积层(反卷积层)作为发生器。
2.创建
GitHub上访问本教程的代码和Jupyter Notebook。所有的指令都在GitHub仓库的README文件中。一个帮手指令将自动为你下载CelebA数据集,让你快速启动并运行。在这个过程中一定要安装matplotlib才能看到真正的图像和另外一定要下载数据集。如果你不想自己安装它,存储库中将包含一个Docker映像。
3.CelebA数据集
CelebFaces数据集包含超过20万个名人图像,每个图像具有40个属性注释。由于我们只是想生成随机面的图像,所以我们将忽略注释。而且数据集包括超过10,000个不同的身份,这对我们的需要来说是最佳的。

013abdaca76274d70ebbe5ecdea6f5f48da0c4a9
不过,尽管如此我们也要定义一个批量生成的函数。这个函数将加载我们的图像,并根据我们稍后将要设置的批量大小给我们一个图像阵列。为了获得更好的效果,我们将裁剪图像,以便只显示脸部。我们还将图像归一化,使得它们的像素值在-0.5+0.5的范围内。最后,我们打算将图像缩小到28x28。这困难会使我们失去了一些图像质量,但它大大减少了训练时间。
4.定义网络输入
在我们开始定义我们的两个网络之前,我们首先要定义我们的输入。我们这样做是为了不让杂乱的训练过程变得比现在更加混乱。在这里,我们只是简单地定义TensorFlow占位符,用于我们真实和虚假的图像输入以及为了保存我们的学习率的值。

    inputs_real = tf.placeholder(tf.float32, shape=(None, image_width, image_height, image_channels), name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    learning_rate = tf.placeholder(tf.float32, name='learning_rate')
   
    return inputs_real, inputs_z, learning_rate

TensorFlow 分配变量占位符特别容易。在完成这些之后,我们可以通过稍后指定一个 Feed 字典来使用我们网络中的占位符。
5. 创建鉴别器网络( The discriminator network
接着,我们来创建我们最重要的网络。鉴别器是 艺术评论家 ,试图区分真实和虚假的图像。简单地说,这是一个用于图像分类的卷积神经网络。如果你已经有了一些深度学习的经验,那么你有可能已经建立了一个非常类似于这个网络的网络。

17bcc5f446ad8af89373e516e9d4441536e349c9
定义这个网络时,我们要使用一个 TensorFlow 变量作用域。这有助于我们稍后的训练过程,所以我们可以重复使用我们鉴别器和发生器的变量名。

def discriminator(images, reuse=False):
    """
    Create the discriminator network
    """
   
    with tf.variable_scope('discriminator', reuse=reuse):
        # … the model

鉴别器网络由三个卷积层组成,相对于原始架构中的四个卷积层。我们将删除最后一层来简化模型。通过这种方式,训练会进行得更快,而且不会损失太多的质量。对于网络中的每一层,我们要进行卷积,然后我们还要进行批标准化,以使网络更快,更准确,接着,我们要进行 Leaky RELU 进一步加快训练。最后,我们将最后一层的输出变平,并使用 sigmoid 激活函数来获得分类。这样我们就会获得一个可以预测图像是否是真实的网络。
6. 发生器网络( The generator network
发生器是以另一种方式存在于 GAN 中:试图欺骗鉴别器的是 艺术家 。发生器利用去卷积层( deconvolutional ),它们与卷积图层完全相反:除了将图像转换为简单的数值数据(如分类)之外,我们还将执行反卷积以将数字数据转换为图像,而不是执行卷积。正如我们在设置鉴别器网络中所做的那样,我们也将其设置在一个可变范围内。

344297c3061f8416e90b8fc5036d9154382b1d73
首先,我们接受我们的输入,称为 Z ,并将其输入到我们的第一个解卷积层。每个解卷积层执行解卷积,然后执行批量归一化和 Leaky ReLu 。然后,我们返回 tanh 激活函数。
注意:先训练!
在我们真正开始训练过程之前,我们需要做一些其他的事情。首先,我们需要定义所有帮助我们计算损失的变量。其次,我们需要定义我们的优化功能。最后,我们将建立一个小函数来输出生成的图像,然后训练网络。
7. 损失函数
我们需要定义三个损失函数,而不是仅具有单个损失函数:发生器的损失函数,使用真实图像时鉴别器的损失函数,以及使用假图像时鉴别器的损失函数。假图像和真实图像损失的总和理应是整体鉴别器损失。
首先,我们先定义我们对真实图像的损失。为此,我们在处理真实图像时要传递鉴别器的输出,并将其与标签全部进行比较。我们在这里使用一种称为标签平滑的技术,通过将 0.9 乘以 1 来帮助我们的网络更加准确。
然后,我们为我们的假图像定义损失。这次我们在处理伪造的图像时将鉴别器的输出传递给我们的标签,如果这些标签都是 0 ,这意味着它们是假的。
最后,对于发生器定义损失器。
8. 优化和可视化
在优化的步骤中,我们正在寻找所有可以通过使用 tf.trainable_variables 函数进行训练的变量。既然我们之前使用了变量作用域,我们可以非常舒适地检索这些变量。然后我们使用 Adam 优化器来帮助我们减少损失。

def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    """
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

在我们准备的最后一步中,我们将编写一个小段程序,使用 matplotlib 库在笔记本上显示生成的图像。
9. 训练
我们正在进行我们的最后一步!现在,我们只获取我们之前定义的输入,损失和优化器,调用一个 TensorFlow 会话并运行批处理。每 400 一个批次,我们通过显示生成的图像和生成器以及鉴别器的损失来输出当前的进度。现在向后看,看到脸部缓缓而稳定地出现。根据你的设置,此进度可能需要一个小时或更长时间。

ae7ce03cb62aa22b8e351b85517e315487e46820
10. 结论
恭喜你!你现在知道 GAN 做什么,甚至知道如何使用它们生成人脸图像。这只是 GAN 的冰山一角, GAN 还有很多其他的应用。
例如:密歇根大学和德国马克斯普朗克研究所的研究人员使用 GAN 从文本中生成图像。根据论文描述,他们能够产生非常真实的花鸟。这可以扩展到一些其他领域,比如警察素描或者平面设计。伯克利的研究人员也设法创建了一个 GAN ,增强了模糊的图像,甚至重建了损坏的图像数据。
总之, GAN 是非常强大的。

作者: Dominic Monn 

Dominic Monn目前是瑞士苏黎世NVIDIA公司的深度实习生

本文由北邮@爱可可-爱生老师推荐,阿里云云栖社组织翻译。

文章原标题《Deep convolutional generative adversarial networks with TensorFlow》,作者:Dominic Monn译者:虎说八道,审阅:

文章为简译,更为详细的内容,请查看原文

相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
195 55
|
27天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
143 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
30天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
81 3
图卷积网络入门:数学基础与架构设计
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
28天前
|
存储 安全 网络安全
网络安全的盾与剑:漏洞防御与加密技术的实战应用
在数字化浪潮中,网络安全成为保护信息资产的重中之重。本文将深入探讨网络安全的两个关键领域——安全漏洞的防御策略和加密技术的应用,通过具体案例分析常见的安全威胁,并提供实用的防护措施。同时,我们将展示如何利用Python编程语言实现简单的加密算法,增强读者的安全意识和技术能力。文章旨在为非专业读者提供一扇了解网络安全复杂世界的窗口,以及为专业人士提供可立即投入使用的技术参考。
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
94 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
50 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
16天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
57 17
|
26天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章