阿里云AI首席科学家闵万里:让萧山救护车等待时间至少降低50%,“城市大脑”是如何做到的

简介:

如何才能让急需救助的人尽快赶到他要去的医院?如何能让每一个急着赶往学校里接孩子的家长能够提早一分钟到达?如何能让监管部门看到每一个危化品车辆实时的路径?让所有企业用户在数字化转型的过程中得到的不仅仅是一个存储成本的降低,而是数据的无限增值?

以上的种种,在阿里云这里都成了可能。在2017杭州·云栖大会上,阿里云机器智能首席科学家闵万里告诉人们不要再依赖于强行的制度或者侥幸,而是让数据增值,让每一比特数据都能服务于人。

在闵万里看来,如果数据不能被计算,就是沉睡的金矿。“我们通过计算这个杠杆,来撬动整个社会中沉睡的公共数据资源,把底层的价值释放出来,由此产生的价值是无法想象的。”

闵万里说,人们都知道波尔量子论、知道广义相对论、知道麦克斯韦方程组,知道视频识别、知道人脸识别、知道OCR,但问题的关键是如何才能将这些分散的一个一个的原子(技术)结合在一起形成一个“功能台”至关重要。

当“功能台”搭建完毕,如何才能让系统更为智能更是难上加难。在现场,闵万里以救护车为例阐述道,当救护车着急赶往医院的路上,有电瓶车跟它抢、有公交车跟它抢,还有闯红灯的行人跟它抢,如何才能让所有人理解生命对于绿色信号灯的呼唤,主动让开一条路而不是靠以往的鸣笛?

“阿里云花了一年时间,在萧山证明这件事可行。”闵万里在现场说。“这也就是怎么能够在单点多能之外做到多体多能? 假设有一条流水线ABCDEFG,最后的产品是H,每一条流水线上的工人们的操作都可能存有一些偏差,当前者有偏差时,后面的人如何实时纠正才能保证H是稳定的?而这就需要ABCDEFG有机的协调在一起,但这种协调绝对不是事后的分析,而是在线的实时反馈。”

随后,闵万里还以萧山为例说明之。在萧山,阿里云让救护车的等待时间最少降低50%。在这个过程中:

  • 阿里云调动了120实时的语音NLP分析,解析救护车去到的地方、送到的医院、以及沿途之间的路径;

  • 随后迅速的规划出在沿途每一个关键节点到达的时间,然后据此调解信号灯;

  • 再者,把整个路径动态下发给急救车的司机、交通信号灯指挥中心以及医院的急救室。几点几分到达急救室,需要什么样的设备,需要什么样的药物,所有的这一切不仅是自动化的结果,更是智能化的结果。差一分一秒就是信号灯周期好几分钟,有可能造成无法想像的后果。

他强调说,这其中最重要的环节就是中间的环节,让每一个路口的信号灯在提前几十秒为其开通绿色,要精准的知道它几点几分会到达这个路口,它会到哪些路口,提前规划。

在闵万里眼中,该案例只是一个多点多能的样板、试点;同时,这也是一个高效的多体多能的演练、实战。

以下是闵万里现场演讲文稿,雷锋网作了不改变原意的修改及编辑:

世界上最令人绝望的等待就是生命已危在旦夕时还无法跨过救护车到医院的距离。这其中包括很多原因,最无情的是阻拦救护车到达的信号灯。

要做到全城的绿色信号灯给到每一个等待拯救的生命,这背后不仅要有普惠的情怀,也需要有技术的实力。这里不仅仅是人工智能技术,还有今天我要讲到的多体智能。

给大家讲一个故事,1900年的时候,经典的物理学已经非常完美,牛顿力学三大定律、麦克斯韦方程组,圆满解释所有物理学的现象。有人对这个现状不满意,第一个人就是爱因斯坦、第二个人就是波尔。大家都知道爱因斯坦广义相对论、引力波,诺贝尔奖,波尔量子论、量子力学、量子计算。今天我们要讲的是同样的一个故事,当我们今天有了这么多非常厉害的视频识别、人脸识别、OCR、文本识别、语音对话的时候,我们是否就可以轻松的解决刚才讲到的一路绿色的生命通道?答案是不是那么简单,它还有很多技术的挑战。

每个单个的原子代表人工智能技术,人脸识别、语音对话。第一个挑战就是怎么把这些分散的技术有机的结合在一起成一个功能台,叫单体多能。就像我们生物的进化从单细胞到功能台一直到今天强大的哺乳类动物人类一样,这是进化的过程。有了单体的多能还不够,当许多个单体一起竞争的时候,怎么让这个系统变得智能?像救护车的场景,有电瓶车跟他抢,有公交车跟他抢,还有闯红灯的人跟他抢的时候,怎么样让所有人都能够听到生命对于绿色信号灯的呼唤,主动的让开一条路而不是靠以往的那种鸣笛。

这是一条进化的道路,从单点的单功能到多体的多能之间的有机的协调。这条路通吗?可以跟大家说,这条路很难。为了做萧山的案例我们花了一年的时间,但是至少我们证明一件事情:可行、可达。

这一条路怎么走过来的?千里之行始于足下,首先在基础性的功能上做到极致。就像今天大家的视觉、视频、人脸识别已经在城市大脑当中用起来,精准的量化每一个路口左转的车辆有多少辆,右转的有多少,直行的有多少。不是统计数据,精准的识别车的类型,帮助城市做交通政策的研判,做实时的排堵。

同样的道理,我们讲的语音识别,可能大家也看到新闻,我们在法院的庭审当中已经做到语音直接转到文字上面去。还有我们在武汉给每一个外来的游客通过语音交互的方式做智能的问答、智能的推荐,这些都是已经落地的单点的智能。

还有刚刚提到的,让数据可视,其实不仅仅是可视,而且可解读。究竟从哪个视角才能了解城市发生了什么,高楼的建立对这个城市有什么影响?回答这些问题要从多个数据源、多个角度去探索。以往做规划、测绘的时候靠软件、靠CAD,非常的慢,甚至还有可能无法做到数据的叠加,但是今天通过这些黑科技,已经可以做到。

如今我们不仅做到可视,还可以把这些数据放在一起,聚合不同类型的数据在具体的场景,比方消防、安监、绿色环保等等环境污染监控,在这些上面做多种数据的实时融合,及时的发现哪一家企业的排废是有问题的,及时发现哪一个消防重点单位有可能出问题,最近的消防车在哪里,需要升降云梯到多少层以上才能急救这样一个火灾。这些决策都是秒级之间完成,要做到这一点还是需要数据的实时聚合。

但是这些可能大家都觉得说我们已经有了非常先进的管理理念和体系制度,不错,在先进的理念的基础上,还需要技术的赋能。一个好的理念和一个坏的执行之间是产生不了一个成功的结果,产生不了普惠的价值。

我们怎么能够在单点多能之外做到多体多能?

假定你有一个流水线,ABCDEFG,最后生产出来的是H,H是你的产品,每一个流水线上的工人们,他们的操作,都有可能有一些偏差,当他们有偏差的时候,后面的人怎么样的实时纠正,最终保证的这个图当中最核心的就是这个H是不动的,任它风吹雨打这个船始终在稳定着。产品的质量是稳定的,生产的效率是稳定的,良品率是稳定的,怎么做到?就需要前面的ABCDEFG有机的协调在一起,这种协调绝对不是事后的分析,做报表能够做出来的,一定要在线实时反馈。

这样一种理念,我们用到了恒逸集团,燃煤过程中吹风的过程中,把煤吹起来,吹煤的速度太快了没有燃烧充分,太晚了效率下降,一环扣一环像ABCDEFG,怎么动态调解,确保生产出来电的效率是最高的。排的污,废气,没有充分燃烧的硫是最少的,我们都做到了。这都是单点单能,多体多能的案例。

萧山的案例。救护车赶着救人却感受到了信号灯的沉默,它听不到信号灯的声音,它只能遵守体制,在左转车道等红灯,哪怕它有特权也飞不过去,这种令人绝望的等待怎么让技术带来新的希望。

大家可以看到,这里面最难的是什么?最难的其实就是每一个人,每一个司机,可能都有自己的利益诉求。都是一个非常聪明的人,都能够杀出一条血路快速到公司上班。这种情况下,怎么从全局的角度让最有优先级的人,最需要时间的救护车及时的过去,重点就是中间的环节,让每一个路口的信号灯在提前几十秒为他开通绿色。那么要精准的知道它几点几分会到达这个路口,它会到哪些路口,提前规划。

今天我们做到了,我们压缩了这个时间50%。至少多了希望是50%。那50%的时间,带来的是生命的挽救,这个价值其实是真的无法衡量的,是一种普惠的结果。

这只是一个多体多能的一个样板、一个试点。在这个体系当中我们调动了120实时的语音NLP分析,解析去到的地方,送到的医院,以及沿途之间的路径,这是第一点。第二点迅速的规划出在沿途每一个关键节点到达的时间,然后据此调解信号灯,这是第二个节点。第三个节点要把整个的路径动态的下发,下发到急救车的司机身上,下发到交通信号灯指挥中心的身上。还有一点就是医院的急救室,几点几分到达急救室,需要什么样的设备,需要什么样的药物,所有的这一切不仅是自动化的结果,更是智能化的结果。差一分一秒就是信号灯周期好几分钟,有可能造成无法想像的后果。

这是一个高效的多体多能的一次演练,一次实战。

这个过程是怎么完成的?为什么我们能够做到或者敢于挑战大家都已经习以为常的一百年的制度,靠信号灯,靠救护车的鸣笛声去闯信号灯,这个制度存在几十年了,为什么今天要挑战它?因为它不完美,因为它依赖太多不确定的因素,因为有这些产品,多体智能的路标,底层计算平台到数据平台,刚刚提到的one data,还有存储器,都是底层的黑科技,把黑科技有效的组合有情怀的组合,带来的就是普惠的价值,让每个老百姓,让每个城市的绿色的生命通道畅通50%。

这只是一个开始。我们做的只是雪地上的一串脚印。看起来非常的优雅,带给你的是诗和远方,但是春暖花开的时候雪慢慢的熔化,这一串脚印慢慢的消失,一切都成为一种传奇。但是人类在月球上的第一个脚印,48年了还存在着。一个很深的雪地上的脚印也是一种创新,一种突破,给了大家想像的空间。

但是那么浅浅的一个脚印在月球上,给了人类一个大步,给了我们一个无穷的想像的空间,探索宇宙,爱因斯坦没有满足四大力学的经典,他创造了宇宙学当中的引力波、广义相对论,今天同样的,阿里云我们也不满足于只做人工智能当中视频识别、语音识别还有文本识别,这些我们都可以做,但是这不是我们的终极目标。

我们的终极目标在哪里?多体智能、普惠,让所有的人不再依赖于一种强行的制度或者侥幸,找到它急救的医院,让每一个急着赶往学校里面接孩子的家长,能够早一分钟看到家长。让监管部门能看到每一个危化品车辆实时的路径。然后还有最重要的一点,让所有企业用户在数字化转型的过程中,你得到的不仅仅是一个存储的成本的降低,更重要的是你有增值,数据智能的增值,阿里云的实践已经证明这个事情的可行。

那么今天我想给大家传递的信息很简单,如果我们一起前行,一起往这个方向走,走往多体智能的道路,今天创造的就不仅仅是萧山的绿色生命通道,我们创造的可能是中国的每一个城市,每一个区里面都有这样弹性的绿色通道,最后得到的一个无法计算的价值。



本文作者:张栋
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
3天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
33 12
|
13天前
|
存储 人工智能 自然语言处理
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
|
6天前
|
人工智能 NoSQL MongoDB
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
|
1天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
8天前
|
人工智能 数据可视化 专有云
阿里云飞天企业版获评2024年AI云典型案例
近日,由全球数字经济大会组委会主办、中国信息通信研究院和中国通信企业协会承办的“云·AI·计算国际合作论坛”作为2024全球数字经济大会系列活动之一,在北京举办。论坛以“智启云端,算绘蓝图”为主题,围绕云·AI·计算产业发展、关键技术、最佳实践等展开交流讨论。阿里云飞天企业版异构算力调度平台获评2024年AI云典型案例。
|
13天前
|
存储 人工智能 缓存
官宣开源 阿里云与清华大学共建AI大模型推理项目Mooncake
近日,清华大学和研究组织9#AISoft,联合以阿里云为代表的多家企业和研究机构,正式开源大模型资源池化项目 Mooncake。
|
8天前
|
人工智能 Kubernetes Cloud Native
荣获2024年AI Cloud Native典型案例,阿里云容器产品技术能力获认可
2024全球数字经济大会云·AI·计算创新发展大会,阿里云容器服务团队携手客户,荣获“2024年AI Cloud Native典型案例”。
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
1天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
1天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营