100:0!Deepmind Nature论文揭示最强AlphaGo Zero,无需人类知识

简介: 本文讲的是100:0!Deepmind Nature论文揭示最强AlphaGo Zero,无需人类知识,AlphaGo“退役”了,但Deepmind在围棋上的探索并没有停止。
本文讲的是100:0!Deepmind Nature论文揭示最强AlphaGo Zero,无需人类知识,

AlphaGo“退役”了,但Deepmind在围棋上的探索并没有停止。

今年5月的乌镇大会的“人机对局”中,中国棋手、世界冠军柯洁9段以0:3不敌AlphaGo。随后Deepmind创始人Hassabis宣布,AlphaGo将永久退出竞技舞台,不再进行比赛。同时Hassbis表示:“我们计划在今年稍晚时候发布最后一篇学术论文,详细介绍我们在算法效率上所取得的一系列进展,以及应用在其他更全面领域中的可能性。就像第一篇 AlphaGo 论文一样,我们希望更多的开发者能够接过接力棒,利用这些全新的进展开发出属于自己的强大围棋程序。”

今天,Deepmind在如约在Nature发布了这篇论文——在这篇名为《Mastering the game of Go without human knowledge》(不使用人类知识掌握围棋)的论文中,Deepmind展示了他们更强大的新版本围棋程序“AlphaGo Zero”,验证了即使在像围棋这样最具挑战性的领域,也可以通过纯强化学习的方法自我完善达到目的。

100:0!Deepmind Nature论文揭示最强AlphaGo Zero,无需人类知识


摘要

人工智能的一个长期目标是通过后天的自主学习(雷锋网注:tabula rasa,意为“白板”,指所有的知识都是逐渐从他们的感官和经验而来),在一个具有挑战性的领域创造出超越人类的精通程度学习的算法。此前,AlphaGo成为首个战胜人类围棋世界冠军的程序,当时的AlphaGo通过深层神经网络进行决策,并使用人类专家下棋的数据进行监督学习,同时也通过自我对弈进行强化学习。在这篇论文中,我们将介绍一种仅基于强化学习的算法,而不使用人类的数据、指导或规则以外的领域知识。AlphaGo成为自己的老师,这一神经网络被训练用于预测AlphaGo自己的落子选择,提高了树搜索的强度,使得落子质量更高,具有更强的自我对弈迭代能力。从一块白板开始,我们的新程序AlphaGo Zero表现惊人,并以100:0击败了此前版本的AlphaGo。


全新强化学习算法:无需任何人类指导

雷锋网发现,这篇论文的最大亮点,在于无需任何人类指导,通过全新的强化学习方式自己成为自己的老师,在围棋这一最具挑战性的领域达到超过人类的精通程度。相比起之前使用人类对弈的数据,这一算法训练时间更短,仅用3天时间就达到了击败李世石的AlphaGo Lee的水平,21天达到了之前击败柯洁的AlphaGo Master的水平。

在3天内——也就是AlphaGo Zero在击败AlphaGo Lee之前,曾进行过490万次自我对弈练习。 相比之下,AlphaGo Lee的训练时间长达数月之久。AlphaGo Zero不仅发现了人类数千年来已有的许多围棋策略,还设计了人类玩家以前未知的的策略。

100:0!Deepmind Nature论文揭示最强AlphaGo Zero,无需人类知识

据Deepmind博客介绍,AlphaGo Zero采用了新的强化学习方法,从一个不知道围棋游戏规则的神经网络开始,然后通过将这个神经网络与强大的搜索算法结合,然后就可以实现自我对弈了。在这样的训练过程中,神经网络被更新和调整,并用于预测下一步落子和最终的输赢。

这一更新后的神经网络将再度与搜索算法组合,这一过程将不断重复,创建出一个新的、更强大版本的AlphaGo Zero。在每次迭代中,系统的性能和自我对弈的质量均能够有部分提高。“日拱一卒,功不唐捐”,最终的神经网络越来越精确,AlphaGo Zero也变得更强。

Alpha Zero与之前版本有如下不同:

  • AlphaGo Zero 只使用棋盘上的黑子和白子作为输入,而之前版本AlphaGo的输入均包含部分人工特征;

  • AlphaGo Zero使用一个神经网络而不是之前的两个。以前版本的 AlphaGo 使用一个“策略网络”来选择落子的位置,并使用另一个“价值网络”来预测游戏的输赢结果。而在AlphaGo Zero中下一步落子的位置和输赢评估在同一个神经网络中进行,从而使其可以更好地进行训练和评估。

  • AlphaGo Zero 无需进行随机推演(Rollout)——这是一种在其他围棋程序中广泛使用于胜负的快速随机策略,从而通过比较确定每一手之后输赢的概率选择最佳落子位置,相反,它依赖于高质量的神经网络来评估落子位置。

上述差异均有主于提高系统的性能和通用性,但使最关键的仍是算法上的改进,不仅使得AlphaGo Zero更加强大,在功耗上也更为高效。

100:0!Deepmind Nature论文揭示最强AlphaGo Zero,无需人类知识

AlphaGo不同版本所需的GPU/TPU资源,雷锋网(公众号:雷锋网)整理

技术细节

新方法使用了一个具有参数θ的深层神经网络fθ。这个神经网络将棋子的位置和历史状态s作为输入,并输出下一步落子位置的概率,用, (p, v) = fθ(s)表示。落子位置概率向量p代表每一步棋(包括不应手)的概率,数值v是一个标量估值,代表棋手下在当前位置s的获胜概率。

AlphaGo Zero的神经网络通过新的自我对弈数据进行训练,在每个位置s,神经网络fθ都会进行蒙特卡洛树(MCTS)搜索,得出每一步落子的概率π。这一落子概率通常优于原始的落子概率向量p,在自我博弈过程中,程序通过基于蒙特卡洛树的策略来选择下一步,并使用获胜者z作为价值样本,这一过程可被视为一个强有力的评估策略操作。在这一过程中,神经网络参数不断更新,落子概率和价值 (p,v)= fθ(s)也越来越接近改善后的搜索概率和自我对弈胜者 (π, z),这些新的参数也会被用于下一次的自我对弈迭代以增强搜索的结果,下图即为自我训练的流程图。

100:0!Deepmind Nature论文揭示最强AlphaGo Zero,无需人类知识

AlphaGo Zero 自我对弈训练的流程示意图

虽然这一技术还处于早期阶段,但AlphaGo Zero的突破使得我们在未来面对人类面对的一些重大挑战(如蛋白质折叠、减少能源消耗、寻找革命性的新材料等)充满信心。众所周知,深度学习需要大量的数据,而在很多情况下,获得大量人类数据的成本过于高昂,甚至根本难以获得。如果将该技术应用到其他问题上,将会有可能对我们的生活产生根本性的影响。






本文作者:岑大师
本文转自雷锋网禁止二次转载,原文链接
目录
相关文章
|
19天前
|
人工智能 自然语言处理 算法
GPT-4无师自通预测蛋白质结构登Nature子刊!LLM全面进军生物学,AlphaFold被偷家?
【9月更文挑战第17天】近日,《自然》子刊发表的一篇论文展示了GPT-4在预测蛋白质结构方面的惊人能力,这一突破不仅揭示了大型语言模型在生物学领域的巨大潜力,还可能影响传统预测工具如AlphaFold的地位。研究人员发现,GPT-4仅通过自然语言处理就能准确预测蛋白质的三维结构,包括常见的氨基酸序列和复杂的α-螺旋结构。实验结果显示,其预测精度与实际结构非常接近。这一成果意味着自然语言处理技术也可应用于生物学研究,但同时也引发了关于其局限性和对现有工具影响的讨论。论文详情见:https://www.nature.com/articles/s41598-024-69021-2
39 8
|
4月前
|
机器学习/深度学习 人工智能 搜索推荐
Anthropic公开Claude 3,像人类一样特殊性格训练方法
【6月更文挑战第18天】Anthropic的Claude 3是款独特的人工智能模型,经“Constitutional AI”训练,发展出类似人类的性格。此方法涉及监督和强化学习,让模型自我改进并依据规则评估行为。虽然可能引入偏见和不可预测性,但旨在增强AI的适应性和人性化交互。[[1](https://arxiv.org/abs/2212.08073)]
82 2
|
4月前
|
机器学习/深度学习 人工智能 算法
ChatGPT如何思考?心理学和神经科学破解AI大模型,Nature发文
【6月更文挑战第5天】Nature文章探讨了人工智能,尤其是ChatGPT这类大型语言模型(LLMs)的思考机制。随着AI复杂性的增加,理解其决策过程成为挑战。可解释AI(XAI)领域致力于揭示这些“黑盒子”的工作原理,但LLMs的规模和潜在问题(如错误信息和隐私泄露)使这一任务更具紧迫性。研究人员借助心理学和神经科学方法尝试理解模型决策,但目前仍处于早期阶段,且有争议认为模型可能只是模拟而非真正理解文本。
78 1
|
机器学习/深度学习 存储 人工智能
蛋白质界的 ChatGPT:AlphaFold1 论文必备知识,不会有人还不知道吧
AlphaFold1是一种人工智能模型,由DeepMind公司开发,用于预测蛋白质的三维结构。它是基于深度学习的方法,使用了神经网络来预测蛋白质的结构。AlphaFold1的预测准确率非常高,已经被证明可以在很短的时间内预测出数千个蛋白质的结构。 AlphaFold1的核心思想是将蛋白质的结构预测问题转化为一个优化问题。具体来说,它使用了一种称为“残基-残基接触预测”的方法,通过预测蛋白质中不同残基之间的接触情况来推断出蛋白质的三维结构。这种方法需要大量的训练数据和计算资源,但是它可以在很短的时间内预测出高质量的蛋白质结构
213 0
蛋白质界的 ChatGPT:AlphaFold1 论文必备知识,不会有人还不知道吧
|
机器学习/深度学习 人工智能 算法
AlphaZero的黑箱打开了!DeepMind论文登上PNAS
AlphaZero的黑箱打开了!DeepMind论文登上PNAS
128 0
|
机器学习/深度学习 人工智能 算法
Nature:科学家首次利用深度学习量化人类意识
Nature:科学家首次利用深度学习量化人类意识
126 0
|
机器学习/深度学习 自然语言处理 算法
「扩散模型」首篇综述!谷歌&北大最新研究
「扩散模型」首篇综述!谷歌&北大最新研究
533 0
|
机器学习/深度学习 算法 C++
学界 | Yoshua Bengio最新修改版论文:迈向生物学上可信的深度学习
深度学习和人工神经网络已经从大脑获得灵感,但大部分是在计算表现形式上的灵感(大多是生物学的,比如 spike 的存在留待考虑)。然而,如今缺少的是对生物神经元中存在的学习规则的一个可信的机器学习说明,从而能够解释一个深度神经网络有效的联合训练,也就是通过一个神经连接长链说明信任分配(credit assignment)。因此,解决信任分配难题也意味着确认神经元与权重,这二者与得到想要的输出和改变参数有关。反向传播提供了一个机器学习答案,然而就像下一段讨论的那样,它并非生物学上可信的。寻找一个生物学上可信的机器学习方法进行深度网络中的信任分配是一个主要的长期问题,也是此论文贡献的方向。
学界 | Yoshua Bengio最新修改版论文:迈向生物学上可信的深度学习
|
机器学习/深度学习 运维 算法
ICLR和CVPR双料大作:谷歌自监督学习框架,夺榜多个异常检测数据集
ICLR2021和CVPR2021双料大作,谷歌最新成果,融合单类分类与深度表示的自监督学习的异常检测算法,超越多个数据集基准。
426 0
ICLR和CVPR双料大作:谷歌自监督学习框架,夺榜多个异常检测数据集
|
机器学习/深度学习 算法 数据挖掘
NeurIPS 2019杰出论文深度解读:窥视机器学习的核心问题
在NeurIPS 2019一千多篇入选论文中,有那么1篇杰出论文值得长时间、深入、反复学习。
131 0
NeurIPS 2019杰出论文深度解读:窥视机器学习的核心问题
下一篇
无影云桌面