【机器学习算法-python实现】K-means无监督学习实现分类

简介: 1.背景        无监督学习的定义就不多说了,不懂得可以google。因为项目需要,需要进行无监督的分类学习。        K-means里面的K指的是将数据分成的份数,基本上用的就是算距离的方法。        大致的思路就是给定一个矩阵,假设K的值是2,也就是分成两个部分,那么我们首先确定两个质心。一开始是找矩阵每一列的最大值max,最小值min,算出range=max-

1.背景

        无监督学习的定义就不多说了,不懂得可以google。因为项目需要,需要进行无监督的分类学习。
        K-means里面的K指的是将数据分成的份数,基本上用的就是算距离的方法。
        大致的思路就是给定一个矩阵,假设K的值是2,也就是分成两个部分,那么我们首先确定两个质心。一开始是找矩阵每一列的最大值max,最小值min,算出range=max-min,然后设质心就是min+range*random。之后在逐渐递归跟进,其实要想明白还是要跟一遍代码,自己每一步都输出一下看看跟自己想象的是否一样。
(顺便吐槽一下,网上好多人在写文章的事后拿了书上的代码就粘贴上,也不管能不能用,博主改了一下午才改好。。。,各种bug)

2.代码     

'''
@author: hakuri
'''
from numpy import *
import matplotlib.pyplot as plt
def loadDataSet(fileName):      #general function to parse tab -delimited floats
    dataMat = []                #assume last column is target value
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine) #map all elements to float()
        dataMat.append(fltLine)
    return dataMat

def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)

def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))#create centroid mat
    for j in range(n):#create random cluster centers, within bounds of each dimension
        minJ = min(array(dataSet)[:,j])
        
        rangeJ = float(max(array(dataSet)[:,j]) - minJ)
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))

    return centroids

def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))#create mat to assign data points                                       #to a centroid, also holds SE of each point
    centroids = createCent(dataSet, k)
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):#for each data point assign it to the closest centroid
            minDist = inf; minIndex = -1
            for j in range(k):
                distJI = distMeas(array(centroids)[j,:],array(dataSet)[i,:])
                if distJI < minDist:
                    minDist = distJI; minIndex = j
            if clusterAssment[i,0] != minIndex: clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2
        print centroids
#         print nonzero(array(clusterAssment)[:,0]
        for cent in range(k):#recalculate centroids
                ptsInClust = dataSet[nonzero(array(clusterAssment)[:,0]==cent)[0][0]]#get all the point in this cluster
                
                centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean 
    id=nonzero(array(clusterAssment)[:,0]==cent)[0] 
    return centroids, clusterAssment,id

def plotBestFit(dataSet,id,centroids):  
     
    dataArr = array(dataSet)
    cent=array(centroids)
    n = shape(dataArr)[0] 
    n1=shape(cent)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    xcord3=[];ycord3=[]
    j=0
    for i in range(n):
        if j in id:
            xcord1.append(dataArr[i,0]); ycord1.append(dataArr[i,1])
        else:
            xcord2.append(dataArr[i,0]); ycord2.append(dataArr[i,1])
        j=j+1 
    for k in range(n1):
          xcord3.append(cent[k,0]);ycord3.append(cent[k,1])    
         
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    ax.scatter(xcord3, ycord3, s=50, c='black')

    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()    


if __name__=='__main__':
    dataSet=loadDataSet('/Users/hakuri/Desktop/testSet.txt')
# #     print randCent(dataSet,2)
#      print dataSet
#      
#      print  kMeans(dataSet,2)
    a=[]
    b=[]
    a, b,id=kMeans(dataSet,2)
    plotBestFit(dataSet,id,a)
   
  
    
         

用的时候直接看最后的main,dataSet是数据集输入,我会在下载地址提供给大家。
kmeans函数第一个参数是输入矩阵、第二个是K的值,也就是分几份。
plotBestFit是画图函数,需要加plot库,而且目前只支持二维且K=2的情况。

3.效果图

      里面黑色的大点是两个质心,怎么样,效果还可以吧!大笑测试的时候一定要多用一点数据才会明显。



4.下载地址


     我的github地址https://github.com/jimenbian,喜欢就点个starO(∩_∩)O哈!



/********************************

* 本文来自博客  “李博Garvin“

* 转载请标明出处:http://blog.csdn.net/buptgshengod

******************************************/



目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
11 1
|
8天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
14天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
15 1
|
15天前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
18 2
|
15天前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
138 3
|
15天前
|
机器学习/深度学习 存储 算法
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
19 1
|
15天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
42 2
|
15天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
37 1
|
13天前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
15 0
|
18天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
21 0

热门文章

最新文章