大数据落地:五步搞定数据驱动营销

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:
文章讲的是 大数据落地:五步搞定数据驱动营销据艾瑞咨询统计,2013年,国内网络购物市场交易规模达到1.85万亿元,增长42%;预计到2016-2017年,国内网络购物市场交易规模将达到40,000亿元。当消费者纷纷借助互联网、智能终端设备等数字化媒介进行交易决策时,对于企业而言,这些海量数据正成为富含业务洞察力以及市场竞争潜力的宝贵资源。

  而随着大数据价值快速获得认可,大数据在不同行业的落地应用就成为最受关注的焦点,也成为2014年大数据技术发展的重大趋势。目前,大数据营销已经不再是一个市场营销术语,已经从萌芽的概念成长为实际的业务应用,成为企业实现业务转型的战略新选择。

  在“2014 Teradata大数据峰会上,Teradata天睿公司针对大数据的落地实践,分享了通过五个步骤如何帮助企业利用数据驱动营销,并将大数据资产转化成真正“货币化”的收益。

  第一步:顺大势,讲战略

  市场营销部门、销售部门、IT部门以及整个高级管理层需要一个统一的战略。这个战略必须直指核心业务目标,并且面面俱到以下5个方面:客户互动、分析、数据、组织结构变化和技术。

  第二步:打破隔阂

  通过对2,200位市场营销人员的调查,Teradata发现大多数营销人员认为内部和外部的营销隔阂将妨碍他们有效地进行营销。同时,Gartner预言首席营销官(CMO)将比首席信息官(CIO)在信息技术方面花费更多,任何疑惑也就烟消云散了。现在比以往任何时候,更需要营销人员与IT人员在整个企业进行合作。

  第三步:解开“数据毛球”

  若公司没有能力处理各个信息源的信息,将会导致互动、应用、数据和流程的堆积,形成杂乱的数据环境。这一杂乱的数据环境,我称之为“数据毛球”。调查显示,杂乱的数据环境导致仅有18%的市场营销人员会使用单一视图观察客户互动。市场营销人员需要在整个企业中开展小型试点项目,用于解开每一条线上的“绳结”。

  第四步:指标至上

  为什么即使现在,市场营销仍难以证明自身价值。因为鲜少有CMO了解如何驱动和评估投资回报率。首先,市场营销人员必须定义哪些宏观指标能够最大体现自己在推动业务发展中所做的努力。然后,他们需要同企业高层分享这些成果,以提升透明度并证明市场营销的价值。

  第五步:流程当道

  大多数企业领导并不认为流程有什么意思。但当流程带来竞争优势或提升品牌关联性时,它就变得很有意思了。临时方法以不再行之有效。今天,市场营销需要灵活,从而缩短营销周期,提高营销运营有效性。成功的营销人员通过简化、自动化和革新流程,以提高营销绩效,提升客户体验,并提高销售量。

  编辑后记

  归根到底,大数据营销就是利用将这些数据转化为真正价值的策略和行动,帮助企业在“数字化冲击”的浪潮中发现和获得巨大的业务价值。换句话说,大数据营销就以数据分析为基础,依靠数据驱动,致力于实现精准客户沟通,进而提出个性化的产品和服务,通过高效匹配客户需求,提高营销的绩效。


作者:小野

来源:IT168

原文链接:大数据落地:五步搞定数据驱动营销

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
1月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
307 7
|
1月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
47 2
|
1月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
86 1
|
26天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
63 4
|
1月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
24 4
|
1月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
58 3
|
1月前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
68 2
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
113 2
|
2月前
|
数据采集 监控 数据可视化
数据驱动营销五步法:提升营销效果的关键指南
数据驱动营销五步法:提升营销效果的关键指南
110 17