《Web安全之机器学习入门》一 2.1 Python在机器学习领域的优势

简介: 本节书摘来自华章出版社《Web安全之机器学习入门》一 书中的第2章,第2.1节,作者:刘焱,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.1 Python在机器学习领域的优势

Python在机器学习领域应用广泛(如图2-1所示),我认为主要原因有两个:
语法简单,功能强大;
生态完整,具备丰富的第三方库,对应的机器学习库非常丰富。
下面将重点介绍四个库。

2.1.1 NumPy

NumPy是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效的多。

screenshot

NumPy包括:
一个强大的N维数组对象Array;
比较成熟的(广播)函数库;
用于整合C/C++和Fortran代码的工具包;
实用的线性代数、傅里叶变换和随机数生成函数。
NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库,专为进行严格的数字处理。
1.安装方法
pip install --user numpy
2.用法示例
首先需要创建数组才能对其进行其他操作。
可以通过给array函数传递Python的序列对象创建数组,如果传递的是多层嵌套的序列,将创建多维数组(下例中的变量c):

>>> a = np.array([1, 2, 3, 4]) 
>>> b = np.array((5, 6, 7, 8)) 
>>> c = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]]) 
>>> b 
array([5, 6, 7, 8]) 
>>> c 
array([[1, 2, 3, 4],        [4, 5, 6, 7],        [7, 8, 9, 10]]) 
>>> c.dtype 
dtype('int32') 

数组的大小可以通过其shape属性获得:

>>> a.shape 
(4,) 
>>> c.shape 
(3, 4)

数组元素的存取方法和Python的标准方法相同:

>>> a = np.arange(10) 
>>> a[5]    # 用整数作为下标可以获取数组中的某个元素 
5 
>>> a[3:5]  # 用范围作为下标获取数组的一个切片,包括a[3]不包括a[5] 
array([3, 4]) 
>>> a[:5]   # 省略开始下标,表示从a[0]开始 
array([0, 1, 2, 3, 4]) 
>>> a[:-1]  # 下标可以使用负数,表示从数组后往前数 
array([0, 1, 2, 3, 4, 5, 6, 7, 8]) 
>>> a[2:4] = 100,101    # 下标还可以用来修改元素的值 
>>> a 
array([  0,   1, 100, 101,   4,   5,   6,   7,   8,   9]) 
>>> a[1:-1:2]   # 范围中的第三个参数表示步长,2表示隔一个元素取一个元素 
array([  1, 101,   5,   7]) 
>>> a[::-1] # 省略范围的开始下标和结束下标,步长为-1,整个数组头尾颠倒 
array([  9,   8,   7,   6,   5,   4, 101, 100,   1,   0]) 
>>> a[5:1:-2] # 步长为负数时,开始下标必须大于结束下标 
array([  5, 101]) 
和Python的列表序列不同,通过下标范围获取的新的数组是原始数组的一个视图。它与原始数组共享同一块数据空间:
>>> b = a[3:7] # 通过下标范围产生一个新的数组b,b和a共享同一块数据空间 
>>> b 
array([101,   4,   5,   6]) 
>>> b[2] = -10 # 将b的第2个元素修改为-10 
>>> b 
array([101,   4, -10,   6]) 
>>> a # a的第5个元素也被修改为10 
array([  0,   1, 100, 101,   4, -10,   6,   7,   8,   9]) 

除了使用下标范围存取元素之外,NumPy还提供了两种存取元素的高级方法。
NumPy和MatLab不一样,对于多维数组的运算,缺省情况下并不使用矩阵运算,如果你希望对数组进行矩阵运算的话,可以调用相应的函数。
NumPy库提供了matrix类,使用matrix类创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和MatLab十分类似。但是由于NumPy中同时存在ndarray和matrix对象,用户很容易将两者弄混。这有违Python的“显式优于隐式”的原则,因此并不推荐在较复杂的程序中使用matrix。下面是使用matrix的一个例子:

>>> a = np.matrix([[1,2,3],[5,5,6],[7,9,9]]) 
>>> a*a**-1 
matrix([[  1.00000000e+00,   1.66533454e-16,  -8.32667268e-17],
[ -2.77555756e-16,   1.00000000e+00,  -2.77555756e-17],
[  1.66533454e-16,   5.55111512e-17,   1.00000000e+00]]) 
因为a是用matrix创建的矩阵对象,因此乘法和幂运算符都变成了矩阵运算,于是上面计算的是矩阵a和其逆矩阵的乘积,结果是一个单位矩阵。
矩阵的乘积可以使用dot函数进行计算。对于二维数组,它计算的是矩阵乘积,对于一维数组,它计算的是点积。当需要将一维数组当作列矢量或者行矢量进行矩阵运算时,推荐先使用reshape函数将一维数组转换为二维数组:
>>> a = array([1, 2, 3]) 
>>> a.reshape((-1,1)) 
array([[1],        [2],        [3]])
>>> a.reshape((1,-1)) 
array([[1, 2, 3]]) 

除了dot计算乘积之外,NumPy还提供了inner和outer等多种计算乘积的函数。这些函数计算乘积的方式不同,尤其是当处理多维数组的时候,更容易搞混。下面分别介绍这几个函数。
dot:对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为“内积”);对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组,它的通用计算公式如下,即结果数组中的每个元素都是——数组a的最后一维上的所有元素与数组b的倒数第二位上的所有元素的乘积和。
dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
下面以两个三维数组的乘积演示一下dot乘积的计算结果。
首先创建两个三维数组,这两个数组的最后两维满足矩阵乘积的条件:

>>> a = np.arange(12).reshape(2,3,2) 
>>> b = np.arange(12,24).reshape(2,2,3) 
>>> c = np.dot(a,b) 
dot乘积的结果c可以看作是数组a, b的多个子矩阵的乘积:
>>> np.alltrue( c[0,:,0,:] == np.dot(a[0],b[0]) ) 
True 
>>> np.alltrue( c[1,:,0,:] == np.dot(a[1],b[0]) ) 
True 
>>> np.alltrue( c[0,:,1,:] == np.dot(a[0],b[1]) ) 
True 
>>> np.alltrue( c[1,:,1,:] == np.dot(a[1],b[1]) ) 
True 

inner:和dot乘积一样,对于两个一维数组,计算的是这两个数组对应下标元素的乘积和;对于多维数组,它计算的结果数组中的每个元素都是——数组a和b的最后一维的内积,因此数组a和b的最后一维的长度必须相同。

inner(a, b)[i,j,k,m] = sum(a[i,j,:]*b[k,m,:]) 

下面是inner乘积的演示:

>>> a = np.arange(12).reshape(2,3,2) 
>>> b = np.arange(12,24).reshape(2,3,2) 
>>> c = np.inner(a,b) 
>>> c.shape (2, 3, 2, 3) 
>>> c[0,0,0,0] == np.inner(a[0,0],b[0,0]) 
True 
>>> c[0,1,1,0] == np.inner(a[0,1],b[1,0]) 
True 
>>> c[1,2,1,2] == np.inner(a[1,2],b[1,2]) 
True 

outer:只按照一维数组进行计算,如果传入参数是多维数组,则先将此数组展平为一维数组,之后再进行运算。outer乘积计算的列向量和行向量的矩阵乘积:

>>> np.outer([1,2,3],[4,5,6,7]) 
array([[ 4,  5,  6,  7],        [ 8, 10, 12, 14],        [12, 15, 18, 21]]) 

矩阵中更高级的一些运算可以在NumPy的线性代数子库linalg中找到。例如inv函数计算逆矩阵,solve函数可以求解多元一次方程组。下面是solve函数的一个例子:

>>> a = np.random.rand(10,10) 
>>> b = np.random.rand(10) 
>>> x = np.linalg.solve(a,b) 
>>> np.sum(np.abs(np.dot(a,x) - b)) 
3.1433189384699745e-15 

solve函数有两个参数a和b。a是一个N×N的二维数组,而b是一个长度为N的一维数组,solve函数找到一个长度为N的一维数组x,使得a和x的矩阵乘积正好等于b,数组x就是多元一次方程组的解。

2.1.2 SciPy

SciPy是一款方便、易于使用、专为科学和工程设计的Python工具包,如图2-2所示。它包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等等。

screenshot

安装方法:
pip install --user numpy scipy matplotlib iPython jupyter pandas sympy nose

2.1.3 NLTK

NLTK在NLP领域中是最常使用的一个Python库,包括图形演示和示例数据,其提供的教程解释了工具包支持的语言处理任务背后的基本概念。
安装程序如下:

pip install -U nltk

加载数据如下:

>>> import nltk 
>>> nltk.download()

用法示例如下。
分词与标识:

>>> import nltk 
>>> sentence = """At eight o'clock on Thursday morning 
... Arthur didn't feel very good.""" 
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens 
['At', 'eight', "o'clock", 'on', 'Thursday', 'morning', 'Arthur', 'did', "n't", 'feel', 'very', 'good', '.'] 
>>> tagged = nltk.pos_tag(tokens) 
>>> tagged[0:6] 
[('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'), ('Thursday', 'NNP'), ('morning', 'NN')]

标识名词实体:

>>> entities = nltk.chunk.ne_chunk(tagged) 
>>> entities 
Tree('S', [('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'),            ('on', 'IN'), ('Thursday', 'NNP'), ('morning', 'NN'),        
    Tree('PERSON', [('Arthur', 'NNP')]),            
        ('did', 'VBD'), ("n't", 'RB'), ('feel', 'VB'),    
        ('very', 'RB'), ('good', 'JJ'), ('.', '.')])

展现语法树(如图2-3):

>>> from nltk.corpus import treebank 
>>> t = treebank.parsed_sents('wsj_0001.mrg')[0] 
>>> t.draw()

screenshot

2.1.4 Scikit-Learn

Scikit-Learn是基于Python的机器学习模块,基于BSD开源许可证。这个项目最早于2007 年发起,目前也是由社区自愿者进行维护的。Scikit-Learn官方网站上可以找到相关的Scikit-Learn的资源、模块下载、文档、例程等等。Scikit-Learn的基本功能主要分为6个部分:分类,回归,聚类,数据降维,模型选择,数据预处理。具体可以参考官方网站上的文档,见图2-4。
依赖的环境:

Python (>= 2.6 or >= 3.3)
NumPy (>= 1.6.1)
SciPy (>= 0.9)

screenshot

安装方法:

pip install -U scikit-learn
相关文章
|
11天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
38 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
23天前
|
Java 开发者 微服务
Spring Boot 入门:简化 Java Web 开发的强大工具
Spring Boot 是一个开源的 Java 基础框架,用于创建独立、生产级别的基于Spring框架的应用程序。它旨在简化Spring应用的初始搭建以及开发过程。
45 6
Spring Boot 入门:简化 Java Web 开发的强大工具
|
8天前
|
安全 应用服务中间件 网络安全
实战经验分享:利用免费SSL证书构建安全可靠的Web应用
本文分享了利用免费SSL证书构建安全Web应用的实战经验,涵盖选择合适的证书颁发机构、申请与获取证书、配置Web服务器、优化安全性及实际案例。帮助开发者提升应用安全性,增强用户信任。
|
1月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
89 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
47 2
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
84 1
|
1月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
43 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
46 0