《Spark与Hadoop大数据分析》——3.4 Spark 应用程序

简介: 本节书摘来自华章计算机《Spark与Hadoop大数据分析》一书中的第3章,第3.4节,作者 [美]文卡特·安卡姆(Venkat Ankam),译 吴今朝,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.4 Spark 应用程序

让我们来了解 Spark Shell 和 Spark 应用程序之间的区别,以及如何创建和提交它们。

3.4.1 Spark Shell 和 Spark 应用程序

Spark 让你可以通过一个简单的、专门用于执行 Scala、Python、R 和 SQL 代码的 Spark shell 访问数据集。用户探索数据并不需要创建一个完整的应用程序。他们可以用命令开始探索数据,这些命令以后可以转换为程序。这种方式提供了更高的开发生产效率。Spark 应用程序则是使用 spark-submit 命令提交的带有 SparkContext 的完整程序。

Scala 程序通常使用 Scala IDE 或 IntelliJ IDEA 编写,并用 SBT 进行编译。Java 程序通常在 Eclipse 中编写,用 Maven 进行编译。Python 和 R 程序可以在任何文本编辑器中编写,也可以使用 Eclipse 等 IDE。一旦编写好 Scala 和 Java 程序,它们会被编译并用 spark-submit 命令执行,如下所示。由于 Python 和 R 是解释型语言,它们是使用 spark-submit 命令直接执行的。因为 Spark 2.0 是用 scala 2.11 构建的,因此,用 Scala 构建 Spark 应用程序就需要用到 scala 2.11。

3.4.2 创建 Spark 环境

任何 Spark 程序的起点都是创建一个 Spark 环境,它提供了一个到 Spark API 的入口。要设置配置属性,需要把一个 SparkConf 对象传递到 SparkContext,如下面的 Python 代码所示:

image

3.4.3 SparkConf

SparkConf 是 Spark 中的主要配置机制,创建新的 SparkContext 时需要一个它的实例。SparkConf 实例包含的是一些字符串的键/值对,对应了用户需要覆盖默认值的那些配置选项。SparkConf 设置可以被硬编码到应用程序代码中,从命令行传递,或从配置文件传递,如以下代码所示:

image
image

image

3.4.4 SparkSubmit

spark-submit 脚本用于在具有任何集群资源管理器的集群上启动 Spark 应用程序。

SparkSubmit 允许动态设置配置,然后在应用程序启动时(当构建新的 SparkConf 时)注入到环境中。如果使用 SparkSubmit,用户的应用程序可以只构造一个“空”的 SparkConf,并将其直接传递给 SparkContext 构造函数。SparkSubmit 工具为最常见的 Spark 配置参数提供了内置标志(flag),还提供了一个通用的 --conf 标志,它可以接受任何 Spark 配置值,如下所示:

image

在有多个配置参数的情况下,可以将它们全部放在一个文件中,并利用 --properties-file 参数把该文件传递给应用程序:

image
image

--jars 选项里包含的应用程序依赖 JAR 包会自动发送到工作机节点。对于 Python 而言,等效的 --py-files 选项可用于将 .egg、.zip 和 .py 库分发到执行进程。注意,这些 JAR 包和库文件会被复制到执行进程节点上每个 SparkContext 的工作目录中。在创建 JAR 包时,最好把所有代码依赖都添加到一个 JAR 包里。这可以在 Maven 或 SBT 中轻松完成。

要获取 spark-submit 的完整选项列表,请使用以下命令:

image

3.4.5 Spark 配置项的优先顺序

Spark 配置优先顺序,从高到低,如下所示:

(1)在用户代码中用 SparkConf 对象上的 set() 函数显式声明的配置。
(2)传递给 spark-submit 或 spark-shell 的标志。
(3)在 spark-defaults.conf 属性文件中的值。
(4)Spark 的默认值。

3.4.6 重要的应用程序配置

用于提交应用程序的一些重要配置参数如下表所示:

image
image

相关文章
|
1月前
|
数据采集 监控 数据可视化
BI工具在数据分析和业务洞察中的应用
BI工具在数据分析和业务洞察中的应用
82 11
|
1月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
91 5
|
2月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
169 1
|
23天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
1月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
122 1
|
1月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
1月前
|
数据采集 数据可视化 数据挖掘
数据驱动决策:BI工具在数据分析和业务洞察中的应用
【10月更文挑战第28天】在信息爆炸的时代,数据成为企业决策的重要依据。本文综述了商业智能(BI)工具在数据分析和业务洞察中的应用,介绍了数据整合、清洗、可视化及报告生成等功能,并结合实际案例探讨了其价值。BI工具如Tableau、Power BI、QlikView等,通过高效的数据处理和分析,助力企业提升竞争力。
67 5
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
61 2
ly~
|
2月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
214 2
|
2月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
259 0