《Spark与Hadoop大数据分析》——3.4 Spark 应用程序

简介: 本节书摘来自华章计算机《Spark与Hadoop大数据分析》一书中的第3章,第3.4节,作者 [美]文卡特·安卡姆(Venkat Ankam),译 吴今朝,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.4 Spark 应用程序

让我们来了解 Spark Shell 和 Spark 应用程序之间的区别,以及如何创建和提交它们。

3.4.1 Spark Shell 和 Spark 应用程序

Spark 让你可以通过一个简单的、专门用于执行 Scala、Python、R 和 SQL 代码的 Spark shell 访问数据集。用户探索数据并不需要创建一个完整的应用程序。他们可以用命令开始探索数据,这些命令以后可以转换为程序。这种方式提供了更高的开发生产效率。Spark 应用程序则是使用 spark-submit 命令提交的带有 SparkContext 的完整程序。

Scala 程序通常使用 Scala IDE 或 IntelliJ IDEA 编写,并用 SBT 进行编译。Java 程序通常在 Eclipse 中编写,用 Maven 进行编译。Python 和 R 程序可以在任何文本编辑器中编写,也可以使用 Eclipse 等 IDE。一旦编写好 Scala 和 Java 程序,它们会被编译并用 spark-submit 命令执行,如下所示。由于 Python 和 R 是解释型语言,它们是使用 spark-submit 命令直接执行的。因为 Spark 2.0 是用 scala 2.11 构建的,因此,用 Scala 构建 Spark 应用程序就需要用到 scala 2.11。

3.4.2 创建 Spark 环境

任何 Spark 程序的起点都是创建一个 Spark 环境,它提供了一个到 Spark API 的入口。要设置配置属性,需要把一个 SparkConf 对象传递到 SparkContext,如下面的 Python 代码所示:

image

3.4.3 SparkConf

SparkConf 是 Spark 中的主要配置机制,创建新的 SparkContext 时需要一个它的实例。SparkConf 实例包含的是一些字符串的键/值对,对应了用户需要覆盖默认值的那些配置选项。SparkConf 设置可以被硬编码到应用程序代码中,从命令行传递,或从配置文件传递,如以下代码所示:

image
image

image

3.4.4 SparkSubmit

spark-submit 脚本用于在具有任何集群资源管理器的集群上启动 Spark 应用程序。

SparkSubmit 允许动态设置配置,然后在应用程序启动时(当构建新的 SparkConf 时)注入到环境中。如果使用 SparkSubmit,用户的应用程序可以只构造一个“空”的 SparkConf,并将其直接传递给 SparkContext 构造函数。SparkSubmit 工具为最常见的 Spark 配置参数提供了内置标志(flag),还提供了一个通用的 --conf 标志,它可以接受任何 Spark 配置值,如下所示:

image

在有多个配置参数的情况下,可以将它们全部放在一个文件中,并利用 --properties-file 参数把该文件传递给应用程序:

image
image

--jars 选项里包含的应用程序依赖 JAR 包会自动发送到工作机节点。对于 Python 而言,等效的 --py-files 选项可用于将 .egg、.zip 和 .py 库分发到执行进程。注意,这些 JAR 包和库文件会被复制到执行进程节点上每个 SparkContext 的工作目录中。在创建 JAR 包时,最好把所有代码依赖都添加到一个 JAR 包里。这可以在 Maven 或 SBT 中轻松完成。

要获取 spark-submit 的完整选项列表,请使用以下命令:

image

3.4.5 Spark 配置项的优先顺序

Spark 配置优先顺序,从高到低,如下所示:

(1)在用户代码中用 SparkConf 对象上的 set() 函数显式声明的配置。
(2)传递给 spark-submit 或 spark-shell 的标志。
(3)在 spark-defaults.conf 属性文件中的值。
(4)Spark 的默认值。

3.4.6 重要的应用程序配置

用于提交应用程序的一些重要配置参数如下表所示:

image
image

相关文章
|
22天前
|
消息中间件 分布式计算 大数据
大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源
大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源
29 0
|
17天前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
57 1
|
22天前
|
分布式计算 监控 大数据
大数据-114 Flink DataStreamAPI 程序输入源 自定义输入源 Rich并行源 RichParallelSourceFunction
大数据-114 Flink DataStreamAPI 程序输入源 自定义输入源 Rich并行源 RichParallelSourceFunction
41 0
|
22天前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
46 0
|
1天前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
13 6
|
2天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
17 5
|
1天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
11 1
|
21天前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
46 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
|
5天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
17 2
|
11天前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
25 1