HBase – Memstore Flush深度解析-阿里云开发者社区

开发者社区> 数据库> 正文

HBase – Memstore Flush深度解析

简介:

Memstore是HBase框架中非常重要的组成部分之一,是HBase能够实现高性能随机读写至关重要的一环。深入理解Memstore的工作原理、运行机制以及相关配置,对hbase集群管理、性能调优都有着非常重要的帮助。


Memstore 概述

HBase中,Region是集群节点上最小的数据服务单元,用户数据表由一个或多个Region组成。在Region中每个ColumnFamily的数据组成一个Store。每个Store由一个Memstore和多个HFile组成,如下图所示:

0

之前我们提到,HBase是基于LSM-Tree模型的,所有的数据更新插入操作都首先写入Memstore中(同时会顺序写到日志HLog中),达到指定大小之后再将这些修改操作批量写入磁盘,生成一个新的HFile文件,这种设计可以极大地提升HBase的写入性能;另外,HBase为了方便按照RowKey进行检索,要求HFile中数据都按照RowKey进行排序,Memstore数据在flush为HFile之前会进行一次排序,将数据有序化;还有,根据局部性原理,新写入的数据会更大概率被读取,因此HBase在读取数据的时候首先检查请求的数据是否在Memstore,写缓存未命中的话再到读缓存中查找,读缓存还未命中才会到HFile文件中查找,最终返回merged的一个结果给用户。

可见,Memstore无论是对HBase的写入性能还是读取性能都至关重要。其中flush操作又是Memstore最核心的操作,接下来重点针对Memstore的flush操作进行深入地解析:首先分析HBase在哪些场景下会触发flush,然后结合源代码分析整个flush的操作流程,最后再重点整理总结和flush相关的配置参数,这些参数对于性能调优、问题定位都非常重要。


Memstore Flush触发条件

HBase会在如下几种情况下触发flush操作,需要注意的是MemStore的最小flush单元是HRegion而不是单个MemStore。可想而知,如果一个HRegion中Memstore过多,每次flush的开销必然会很大,因此我们也建议在进行表设计的时候尽量减少ColumnFamily的个数。

  1. Memstore级别限制:当Region中任意一个MemStore的大小达到了上限(hbase.hregion.memstore.flush.size,默认128MB),会触发Memstore刷新。
  2. Region级别限制:当Region中所有Memstore的大小总和达到了上限(hbase.hregion.memstore.block.multiplier * hbase.hregion.memstore.flush.size,默认 2* 128M = 256M),会触发memstore刷新。
  3. Region Server级别限制:当一个Region Server中所有Memstore的大小总和达到了上限(hbase.regionserver.global.memstore.upperLimit * hbase_heapsize,默认 40%的JVM内存使用量),会触发部分Memstore刷新。Flush顺序是按照Memstore由大到小执行,先Flush Memstore最大的Region,再执行次大的,直至总体Memstore内存使用量低于阈值(hbase.regionserver.global.memstore.lowerLimit * hbase_heapsize,默认 38%的JVM内存使用量)。
  4. 当一个Region Server中HLog数量达到上限(可通过参数hbase.regionserver.maxlogs配置)时,系统会选取最早的一个 HLog对应的一个或多个Region进行flush
  5. HBase定期刷新Memstore:默认周期为1小时,确保Memstore不会长时间没有持久化。为避免所有的MemStore在同一时间都进行flush导致的问题,定期的flush操作有20000左右的随机延时。
  6. 手动执行flush:用户可以通过shell命令 flush ‘tablename’或者flush ‘region name’分别对一个表或者一个Region进行flush。


Memstore Flush流程

为了减少flush过程对读写的影响,HBase采用了类似于两阶段提交的方式,将整个flush过程分为三个阶段:

  1. prepare阶段:遍历当前Region中的所有Memstore,将Memstore中当前数据集kvset做一个快照snapshot,然后再新建一个新的kvset。后期的所有写入操作都会写入新的kvset中,而整个flush阶段读操作会首先分别遍历kvset和snapshot,如果查找不到再会到HFile中查找。prepare阶段需要加一把updateLock对写请求阻塞,结束之后会释放该锁。因为此阶段没有任何费时操作,因此持锁时间很短。
  2. flush阶段:遍历所有Memstore,将prepare阶段生成的snapshot持久化为临时文件,临时文件会统一放到目录.tmp下。这个过程因为涉及到磁盘IO操作,因此相对比较耗时。
  3. commit阶段:遍历所有的Memstore,将flush阶段生成的临时文件移到指定的ColumnFamily目录下,针对HFile生成对应的storefile和Reader,把storefile添加到HStore的storefiles列表中,最后再清空prepare阶段生成的snapshot。


上述flush流程可以通过日志信息查看:

/******* prepare阶段 ********/
2016-02-04 03:32:41,516 INFO  [MemStoreFlusher.1] regionserver.HRegion: Started memstore flush for sentry_sgroup1_data,{\xD4\x00\x00\x01|\x00\x00\x03\x82\x00\x00\x00?\x06\xDA`\x13\xCAE\xD3C\xA3:_1\xD6\x99:\x88\x7F\xAA_\xD6[L\xF0\x92\xA6\xFB^\xC7\xA4\xC7\xD7\x8Fv\xCAT\xD2\xAF,1452217805884.572ddf0e8cf0b11aee2273a95bd07879., current region memstore size 128.9 M

/******* flush阶段 ********/
2016-02-04 03:32:42,423 INFO  [MemStoreFlusher.1] regionserver.DefaultStoreFlusher: Flushed, sequenceid=1726212642, memsize=128.9 M, hasBloomFilter=true, into tmp file hdfs://hbase1/hbase/data/default/sentry_sgroup1_data/572ddf0e8cf0b11aee2273a95bd07879/.tmp/021a430940244993a9450dccdfdcb91d

/******* commit阶段 ********/
2016-02-04 03:32:42,464 INFO  [MemStoreFlusher.1] regionserver.HStore: Added hdfs://hbase1/hbase/data/default/sentry_sgroup1_data/572ddf0e8cf0b11aee2273a95bd07879/d/021a430940244993a9450dccdfdcb91d, entries=643656, sequenceid=1726212642, filesize=7.1 M

整个flush过程可能涉及到compact操作和split操作,因为过于复杂,在此暂时略过不表。


Memstore Flush对业务读写的影响

上文介绍了HBase在什么场景下会触发flush操作以及flush操作的基本流程,想必对于HBase用户来说,最关心的是flush行为会对读写请求造成哪些影响以及如何避免。因为不同触发方式下的flush操作对用户请求影响不尽相同,因此下面会根据flush的不同触发方式分别进行总结,并且会根据影响大小进行归类:

影响甚微

正常情况下,大部分Memstore Flush操作都不会对业务读写产生太大影响,比如这几种场景:HBase定期刷新Memstore、手动执行flush操作、触发Memstore级别限制、触发HLog数量限制以及触发Region级别限制等,这几种场景只会阻塞对应Region上的写请求,阻塞时间很短,毫秒级别。

影响较大

然而一旦触发Region Server级别限制导致flush,就会对用户请求产生较大的影响。会阻塞所有落在该Region Server上的更新操作,阻塞时间很长,甚至可以达到分钟级别。一般情况下Region Server级别限制很难触发,但在一些极端情况下也不排除有触发的可能,下面分析一种可能触发这种flush操作的场景:

相关JVM配置以及HBase配置:

maxHeap = 71
hbase.regionserver.global.memstore.upperLimit = 0.35
hbase.regionserver.global.memstore.lowerLimit = 0.30

基于上述配置,可以得到触发Region Server级别的总Memstore内存和为24.9G,如下所示:

2015-10-12 13:05:16,232 INFO  [regionserver60020] regionserver.MemStoreFlusher: globalMemStoreLimit=24.9 G, globalMemStoreLimitLowMark=21.3 G, maxHeap=71 G

假设每个Memstore大小为默认128M,在上述配置下如果每个Region有两个Memstore,整个Region Server上运行了100个region,根据计算可得总消耗内存 = 128M * 100 * 2 = 25.6G > 24.9G,很显然,这种情况下就会触发Region Server级别限制,对用户影响相当大。

根据上面的分析,导致触发Region Server级别限制的因素主要有一个Region Server上运行的Region总数,一个是Region上的Store数(即表的ColumnFamily数)。对于前者,根据读写请求量一般建议线上一个Region Server上运行的Region保持在50~80个左右,太小的话会浪费资源,太大的话有可能触发其他异常;对于后者,建议ColumnFamily越少越好,如果从逻辑上确实需要多个ColumnFamily,最好控制在3个以内。


总结

本文主要介绍了HBase引擎中至关重要的一个组件-Memstore,主要介绍了Memstore Flush的几种触发条件、Flush完整流程以及各种不同场景下Flush对业务读写的影响。希望通过此篇文章可以对Memstore有一个更深入的了解。


本文转载自:http://hbasefly.com

原文链接

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
数据库
使用钉钉扫一扫加入圈子
+ 订阅

分享数据库前沿,解构实战干货,推动数据库技术变革

其他文章