HDFS/HBase技术报告·分布式数据库设计架构的全面解析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
简介: HDFS/HBase技术报告·分布式数据库设计架构的全面解析

Hadoop生态的分布式数据库


1、什么是分布式数据库?


从狭义的理解就是分布式关系型数据库,主要特指目前热门的NewSQL。


从广义的理解,分库分表的传统关系型数据库,传统关系型数据库集群,关系型数据库的主从架构,分布式KV数据库(例如:HBase),分布式文档数据库(例如:MongoDB),分布式关系数据库(例如:TiDB)等,统称为分布式数据库。


本文主要讲Google一脉相承的Hadoop生态下的分布式数据库架构设计,以及传统RDBMS与NoSQL的分布式环境下的一致性对比:


2、Hadoop HDFS的数据存储模型


最早Google发明了GFS分布式文件系统,之后对应的开源项目就是鼎鼎大名的Hadoop HDFS。


GFS/HDFS的特点表现在顺序的、成块的、无索引的向文件块中写入数据,并在集群环境中按块(block)均匀分布存储,使用时再根据MapReduce、Spark的并行任务,按块批次的读取分析。这样就把写入和并行读取的性能发挥到了极致,具备了任何建立索引的数据库都无法比拟的读写速度。

20210420104524692.png

HDFS的数据写入结构示意图


上图是一个写入HDFS数据的例子,我们需要知道HDFS这些事情:


需要写入HDFS的文件会被分成数据块,一个数据块通常是64M或者128M。


数据块在HDFS集群中默认有三个副本,平均分配在不同的DataNode数据节点上。


由于HDFS的分布式架构是中心化管理,因此并没有数据节点主副的概念,只有顺序的概念,所有数据节点都是存储数据块副本的,全部通过namenode节点安排数据节点的写入顺序。


数据节点的写入过程就像一个数据管道,根据客户端就近原则,形成数据节点的排队,当第一个节点写入数据包后,然后再向数据管道的下一个数据节点复制,以此类推,并得到完成确认。


3、HBase的架构设计


为了更好的理解HBase/Bigtable,一定需要先铺陈一下它们所依赖的分布式文件系统基础环境,然后再看看这些巧夺天工的分布式数据库设计如何形成的。


由于GFS/HDFS集群的高性能设计是建立在放弃随机查找的基础之上。那么如何既能拥有随机查找的特性,又能充分利用好HDFS/GFS的集群优势,而且还能在分布式环境下,具备数据写入的强一致性呢?这才涌现出了HBase/Bigtable这类基于分布式文件系统的分布式数据库。


但大家要注意了,实际上HBase/Bigtable的随机查找设计目标并不是解决复杂的join关联查找或二次索引范围查找,而是实现简单的一个K-V查询模型,满足海量数据的存放条件下,通过主键查找结果,能达到毫秒级响应的数据库。


2021042010452588.png


HBase的数据写入结构示意图


上图就是HBase的写入过程以及HDFS作为物理层支撑的架构示意图。


HBase按照LSM-Tree索引加上SSTable数据结构建立了NoSQL常用的数据存储模型。写入过程分成了下面几个部分:


客户端向HBase的Region Server写入数据,会首先进入到WAL(Write-Ahead-Log)预写日志中,然后再进入到选择的Region的MemStore中,那这个WAL的目的是什么呢?保命用的!因为一旦Region Server断电或异常崩溃,MemStore的数据是在内存里,肯定就丢了,MemStore恢复的时候就靠WAL存的日志数据了。MemStore真正同步数据后,WAL才会从本地写入HDFS,否则回滚。


Region的MemStore是一个放在内存里的高速操作区,MVCC事务操作,最近写入记录读取都可以在此处快速完成,当数据在MemStore写满后,就会刷入到Store File磁盘存储区。


Store File存储区就是不断通过memstore刷盘而形成的HFile,每个HFile默认分配128M,大小正好与HDFS的一个数据块(block)一致,HFile的物理位置就是存储在HDFS的每个数据块中,HFile就是不可更改的了,并通过HDFS的副本机制,形成三副本保证数据的可靠性。


3、HDFS与HBase的协作配合


从上述的HDFS和HBase系统的配合中(GFS与BigTable同理)我们可以看到Hadoop生态体系设计的巧妙结构:


HDFS对于大文件块的顺序写入,批量分析,HDFS的无索引、顺序写入、管道复制机制充分体现了Google的暴力美学~解决问题的方式务实、简单、直接、高效。


HBase作为列簇设计的K-V数据库,又实现了细腻入微的设计思想,通过LSM-Tree索引和SSTable数据结构建立起原生数据库存储层。


HBase机制上WAL、MemStore、StoreFile形成数据操作的多元素协作。


HBase架构上HRegion Server、HRegion、HLog、HStore层层嵌套,形成分布式数据库的集群化能力。


最关键的就是HBase与HDFS的分工思想,HBase解决业务数据记录写入,K-V随机查找(毫秒级),由Region Server控制的行级事务等一些列分布式数据库特征;而HDFS解决小文件汇聚成大文件的高性能处理,分布式文件系统的海量存储,数据多副本的可靠性,以及成为Mapreduce、Spark、Hive等其他框架与HBase之间协作的基础平台。


分布式环境下数据库的一致性


首先数据库的一致性,从传统的关系型数据库讲,就是指在一个库中一次业务操作,无论涉及多少张表,多少行集,要么都失败,要么都成功,不能出现结果和预想的不一致,就是所谓的事务ACID特性中最重要的强一致性。


事务具有4个特征,分别是原子性、一致性、隔离性和持久性,简称事务的ACID特性;


(一)、原子性(atomicity)


一个事务要么全部提交成功,要么全部失败回滚,不能只执行其中的一部分操作,这就是事务的原子性


(二)、一致性(consistency)


事务的执行不能破坏数据库数据的完整性和一致性,一个事务在执行之前和执行之后,数据库都必须处于一致性状态。


(三)、隔离性(isolation)


事务的隔离性是指在并发环境中,并发的事务相互隔离的,一个事务的执行不能不被其他事务干扰。


(四)、持久性(Durability)


一个事务一旦成功提交,它对数据库的改变必须是永久的,即便是数据库发生故障也应该不回对其产生任何影响。


我们重点说说分布式环境下数据库的一致性(consistency)特点:


1、MySQL的分布式一致性


一个特别典型的例子就是MySQL的主从复制架构:异步,半同步,全同步。


异步:尽管主库保证了数据的强一致性,但是数据一旦写给binlog,主库就无视了从库的一致性,继续忙自己的事情,那么这个过程就是异步的,从库从binlog中拿到结果再重放保证与主库的一致性,我们把这个过程叫做最终一致性。


半同步:MySQL 主库写入binlog后,至少集群中任意一个MySQL从库反馈主库,它同步成功了,那么主库就继续忙自己的事了,我们可以把这个过程称为弱一致性。


全同步:自然不用想了,MySQL主库写入binlog,集群其他节点都要重放后,报告同步成功了,主库才会忙其他事情,这就是分布式环境的强一致性了!


弱一致性是在强一致性和最终一致性中寻找一个平衡,至少有一个备份点是必须与主保持一致的,那么数据的可靠性是不是就提升了,同时性能上也不至于太差了。


2、NoSQL的分布式一致性


其次纠正一个错误的观点,NoSQL不能都视之为弱一致性。得具体看是哪个NoSQL框架,例如:MongoDB我们认为是NoSQL,它在副本集模式下,可以灵活地设置一致性规则,其中majority选项的意思是主库写入oplog后,大多数成员需要确认才行。


这个够挠头吧,怎么又来了个大多数,这岂不是在弱一致性和强一致性之间又出现了一种一致性模式,可实际就是这样。


我们再回来谈本文重点提到的一个NoSQL:HBase,它可的确是分布式环境下的强一致性啦,是不是颠覆了你对NoSQL的认知了!


因为HBase的是基于行级的事务,也就是说当一次写入记录的过程,一定是一个Region只分配一个Region Server写入,而且对于行级数据的操作要不写入成功,要不失败。如果一个节点挂了,恢复节点在没有恢复完数据之前就是不可用了。


HBase在CAP定理中保证了CP,舍弃了A:一致性C(HBase同一时间写入不同节点的数据必须一致),容错性P(即便有节点出错,系统还能正常运行),但是这个可靠性A就有问题(必须等待节点恢复完成,对请求就不能立刻有响应了)


20210420104525668.png


最后再说说有些NoSQL的弱一致性为什么就可以被接受?


回顾一下最开始的MySQL的异步模式复制,它为什么是MySQL的默认复制模式?


若满足最终一致性,那么这类分布式系统选择了CAP定理中的AP,就是说为了保证系统内部无论是否出错,都会给客户响应。代价就是分布式各节点的数据副本有可能不一致,但这个问题不是此类系统业务最在乎的事情,往往系统的高性能,并能为客户端提供快速响应力才是关键目标,MySQL的默认主从复制如此,有些NoSQL亦如此。


传世的关系模型

首先从数据库的表达力来讲,并不是NoSQL要强于关系模型,事实上SQL的表达力是无出其右的,否则就不会兴盛四十年而不衰,就不会有Hive SQL、Spark SQL、Presto、Impala这些以支持SQL交互为起点的NoSQL上层框架存在的必须性。


看吧,还没到NewSQL这一代的时候,返祖的现象就已经出现了!


1、我们再温故知新一下什么是关系模型


关系型模型之父Edgar F. Codd,在1970年Communications of ACM 上发表了《大型共享数据库数据的关系模型》这就是永恒的经典,关系模型的语义设计达到了40年来普世的易于理解,语法的嵌套,闭环,完整。

20210420104525825.jpg


关系型模型之父Edgar F. Codd


原始的关系模型:


结构(structure)结构的主要特征就是关系(relation),表格就是实现形式关系定义在类型(type or domain)的基础上,属性(attribute)就是类型的实际值,N个属性就是描述了N元关系每个关系都至少有一个候选键(唯一标识符),它是属性的组合,通常只有一个属性。元组(tuple)就是属性的集合


完整性(integrity)实体完整性规则:主键属性不允许null,不能存在任何不匹配的外键取值。


操作(manipulation)关系的运算符集合(限制、投影、积、交、并、差、连接),关系表达式赋值关系(例如:关系1 并 关系2赋值给关系3),操作的输入关系和输出关系,形成了闭包(closure)性质,就可以写出嵌套表达式


原始理论具体到实现再翻译成我们好理解的描述:结构、完整性、操作就构成了现在传统数据库的关系模型。


结构:就是我们经常要先对数据库预先定义的表名和字段(名称、类型)


完整性:就是表的主键不能为空,表与表之间的主外键关联必须保证是完整的,外键一定是能找到主键的。


操作:那就是SQL表达式啦,SQL的子查询就是典型的闭包(Closure),可以形成嵌套表达式。


2、虽然NoSQL很火,但我们这个世界没法 NO SQL


HBase/Bigtable可以认为是NoSQL的典型代表


恰恰NoSQL发展至今,出现了Hive SQL,Spark SQL,Presto,Impala,直到基于Google Spanner论文的TIDB,CockroachDB等NewSQL的不断涌现,才让我们用实践证明,无论是NoSQL也好,NewSQL也罢,它们的查询语言客户端又回到了SQL。


我们只是在大数据领域需要替换关系型数据库的存储逻辑,使得数据库更分布式化,更容易实现扩展。这是符合单机性能到了天花板后,必须横向扩展的硬需求,但这也并不是说关系模型就过时了!


像HBase/Bigtable这样的NoSQL,大多数采用了LSM-Tree的索引机制,来替换RDBMS的B-Tree机制,这么做都是为了能实现内存与磁盘,写入与查找的更平衡利用。


它们又用数据分片的水平切分替换RDBMS的分库分表的垂直切分,让节点与集群的水平伸缩性更为自动化,而不是像分库分表那样进行人工复杂的介入。


TiDB这些NewSQL的出现恰恰是在缝合关系模型和分布式存储之间的裂缝,面向客户端依然是关系模型,强化分布式业务更新的强一致性(分布式事务,这是最难的最复杂的地方),面向存储则坚定的选择K-V模型。


例如TIDB的TIKV集群采用的就是rocksdb,rocksdb的底层索引机制又和HBase/Bigtable采用相同设计机制的又一个nosql成员。


因此并不是Google的Spanner论文以及F1,TiDB这些实现技术开了历史的倒车,恰恰是对狂热的nosql运动的一种反思,对成为经典的SQL关系模型理论的一种认真思考和融合。


任何新技术都是站在前辈的基础上开启的,我们总要回头望望,反思新技术的运用到底我们得到了什么,又失去了什么!


相关文章
|
23天前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
56 1
|
15天前
|
运维 监控 持续交付
微服务架构解析:跨越传统架构的技术革命
微服务架构(Microservices Architecture)是一种软件架构风格,它将一个大型的单体应用拆分为多个小而独立的服务,每个服务都可以独立开发、部署和扩展。
140 36
微服务架构解析:跨越传统架构的技术革命
|
23小时前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
123 9
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
20天前
|
存储 Linux API
深入探索Android系统架构:从内核到应用层的全面解析
本文旨在为读者提供一份详尽的Android系统架构分析,从底层的Linux内核到顶层的应用程序框架。我们将探讨Android系统的模块化设计、各层之间的交互机制以及它们如何共同协作以支持丰富多样的应用生态。通过本篇文章,开发者和爱好者可以更深入理解Android平台的工作原理,从而优化开发流程和提升应用性能。
|
22天前
|
弹性计算 持续交付 API
构建高效后端服务:微服务架构的深度解析与实践
在当今快速发展的软件行业中,构建高效、可扩展且易于维护的后端服务是每个技术团队的追求。本文将深入探讨微服务架构的核心概念、设计原则及其在实际项目中的应用,通过具体案例分析,展示如何利用微服务架构解决传统单体应用面临的挑战,提升系统的灵活性和响应速度。我们将从微服务的拆分策略、通信机制、服务发现、配置管理、以及持续集成/持续部署(CI/CD)等方面进行全面剖析,旨在为读者提供一套实用的微服务实施指南。
|
23天前
|
SQL 数据可视化 数据库
多维度解析低代码:从技术架构到插件生态
本文深入解析低代码平台,涵盖技术架构、插件生态及应用价值。通过图形化界面和模块化设计,低代码平台降低开发门槛,提升效率,支持企业快速响应市场变化。重点分析开源低代码平台的优势,如透明架构、兼容性与扩展性、可定制化开发等,探讨其在数据处理、功能模块、插件生态等方面的技术特点,以及未来发展趋势。
|
22天前
|
SQL 数据可视化 数据库
多维度解析低代码:从技术架构到插件生态
本文深入解析低代码平台,从技术架构到插件生态,探讨其在企业数字化转型中的作用。低代码平台通过图形化界面和模块化设计降低开发门槛,加速应用开发与部署,提高市场响应速度。文章重点分析开源低代码平台的优势,如透明架构、兼容性与扩展性、可定制化开发等,并详细介绍了核心技术架构、数据处理与功能模块、插件生态及数据可视化等方面,展示了低代码平台如何支持企业在数字化转型中实现更高灵活性和创新。
41 1
|
22天前
|
SQL 数据可视化 数据库
多维度解析低代码:从技术架构到插件生态
本文深入解析低代码平台,涵盖技术架构、插件生态及应用价值。重点介绍开源低代码平台的优势,如透明架构、兼容性与扩展性、可定制化开发,以及其在数据处理、功能模块、插件生态等方面的技术特点。文章还探讨了低代码平台的安全性、权限管理及未来技术趋势,强调其在企业数字化转型中的重要作用。
35 1
|
26天前
|
缓存 监控 网络协议
深入解析微服务架构中的服务发现机制
深入解析微服务架构中的服务发现机制
29 1
|
23天前
|
存储 边缘计算 安全
深入解析边缘计算:架构、优势与挑战
深入解析边缘计算:架构、优势与挑战
38 0

推荐镜像

更多
下一篇
DataWorks