大数据应用让医疗护理更高效

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

ZDNet至顶网软件频道消息:正如创可贴无法修复骨折一样,原本孤立存在、杂乱无章的病历、医疗数据和账单信息也很难为数据分析提供依据。这样的数据孤岛可能会导致关键的运营决策和临床决策不明智,且效率低下。

面对不断攀升的成本和不断下降的边际利润,医疗机构的高管们(CFO首席财务官、CIO首席信息官和CMO首席运营官)如何才能为自己的机构开出一剂成本节约、效率提升、护理质量改善的良方呢?

Advisory Board Company(一家专注医疗信息化的咨询机构)最新研究预测道:在未来十年内,普通医疗机构的成本支出每年将提高5%。因此,为了生计,医疗机构应想方设法将成本降低20%。而实现这一目标的方法包括采用更加灵活的人员配备模式和实现护理标准化。这对于医疗机构的高管而言并非易事,因为长期以来,他们关注的重点都集中在如何支持护理和医师团队,如何管理日益缩小的利润空间,以及促进业绩增长等等。

Advisory Board Company建议求助于可以“带来长期回报”的创新技术。其中一项便是利用大数据分析技术。微软委托IDC进行的一项最新研究指出,全球医疗行业在未来四年内从数据挖掘中获得的数据红利将高达1090亿美元。在由一台台医疗器械构成的网络之中,隐藏着一片由纷繁的运营数据、财务数据和临床数据构成的汪洋大海,若能善加利用,便能级大地节约成本、显著改善运营效果,从而让原本不可能实现的目标变得可行。

美国已经有医疗机构通过数据洞察,节约了可观的成本,并且提高了患者护理质量:美国威斯康星州麦迪逊的Meriter Health Services公司部署了一套商业智能解决方案,把来自分析系统和电子健康档案(EHR) 的数据进行整合,为行政人员和临床人员提供了大量的、对实际工作有指导意义的信息。丰富的信息为Meriter的整形外科医师提供了准确的基准数据,还为医生选择更适合患者的植入假体提供了依据。在这些信息的帮助下,医院能够更高效地利用医疗开支——Meriter在利用数据分析后的短短8个月中节约了近100万美元。

数据洞察帮助Meriter的医生密切监控和追踪各项业务流程,从而更好地为患者订制护理方案,帮助整个医院建立更加标准的操作规范——这种功效完全可以推广到其它医疗卫生机构。通过利用数据分析工具和机器学习中的最新突破性技术,医疗机构的管理者们可以把孤立的数据集融汇成统一的数据流,从而揭示患者总体情况以及医护人员的水平。这不仅有助于医疗机构根据患者需求优化人力成本,提升护理质量,更为其评估新服务、设备或者功能的投资价值提供了依据。

为证实大数据分析的确能对医疗行业起到积极作用,英国利兹教学医院(Leeds Teaching Hospital)分析了该院六年的入院记录,结果发现了至少30项措施可以进一步提升运营效率和财务效率:比如通过减少打印,每年就能节约大约2万英磅的成本。该院还发现,因为饮酒过度看急诊的病人大多曾有犯罪前科,而偶尔在夜店买醉的大学生并不会酗酒到如此地步。这一发现能够很好地帮助社区工作人员合理部署管理资源,比如在社区中有针对性地进行饮酒警示干预。

除了对现有的数据进行分析,我们甚至能通过这些数据来预测即将发生的结果,并以此为依据制定出治疗方案。通过使用数据可视化工具和其它自助的商业智能工具,健康专家可以更加迅速地选择最经济的治疗方案。通过使用移动设备,治疗团队的成员现在可以在医院的任何地方访问统一的商业智能(BI)工具,并从临床记录、急诊笔记和社交媒体聊天记录中获得对现实工作有指导意义的信息,从而更好地监测患者的状况。治疗团队也可以更好地了解同时患有多种症状的患者的状况,并根据早期症状预测病情可能会恶化的患者,为其安排入院治疗。有了历史数据和对正在发生的情况的实时了解,治疗团队可以在接到通知后立即做出反应,及时采取预防措施,从而加速患者康复,避免走弯路,给患者带来健康和经济上的更多损失。

面对不断压缩的医疗预算和日渐增长的就医需求,商业智能和数据分析可能是最为行之有效的管理工具。它将在洞察数据价值、预防疾病蔓延、杜绝医疗浪费、避免高昂医疗费用产生等方面发挥巨大作用。

原文发布时间为:2014年07月23日
本文作者:微软全球健康计划业务经理Dennis Schmuland
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
133 1
|
14天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
28天前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
2月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
67 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
ly~
|
2月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
167 2
ly~
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
146 3
ly~
|
2月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
431 2
ly~
|
2月前
|
供应链 监控 搜索推荐
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
ly~
591 2
|
3月前
|
存储 数据可视化 大数据
大数据管理与应用
大数据管理与应用是一门融合数学、统计学和计算机科学的新兴专业,涵盖数据采集、存储、处理、分析及应用,旨在帮助企业高效决策和提升竞争力。核心课程包括数据库原理、数据挖掘、大数据分析技术等,覆盖数据处理全流程。毕业生可从事数据分析、大数据开发、数据管理等岗位,广泛应用于企业、金融及互联网领域。随着数字化转型加速,该专业需求旺盛,前景广阔。
158 5
|
3月前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
228 6