Linux文件共享(二)——两个独立进程打开同一个文件

简介:

如果两个独立进程各自打开了同一文件,则有图3-2中所示的安排。我们假定第一个进程使该文件在文件描述符3上打开,而另一个进程则使此文件在文件描述符4上打开。打开此文件的每一个进程都得到一个文件对象但对一个给定的文件只有一个v节点表项。每个进程都有自己的文件对象的一个理由:这种安排使每个进程都有它自己对该文件的当前位移量这种情况不会增加对应的打开文件引用计数,而会增加dentry的引用。

 

       给出了这些数据结构后,现在对前面所述的操作作进一步说明。

(1) 在完成每一个write后,在文件表项中的当前文件位移量即增加所写的字节数。如果这使当前文件位移量超过了当前文件长度,则在i节点表象中的当前文件长度被设置为当前文件位移量(也就是该文件加长了)

(2)   如果用O_APPEND标志打开一个文件,则相应标志也被设置到文件表项file对象)的文件状态标志中。每次对这种具有填写标志的文件执行写操作时,在文件表项中的当前文件位移量首先被设置为i节点表项中的文件长度。这就使得每次写的数据都添加到文件的当前尾端处。

(3)  lseek值修改文件表项中的当前文件位移量,没有进行任何I/O操作。不影响i节点,只影响file对象,详细分析请见lvyilong316博客:空洞文件)

(4)  若一个文件用lseek被定位到文件当前的尾端,则文件表项中的当前文件位移量被设置为i节点表项中的当前文件长度。

将图3-2转化为linux下的具体实现,如下图所示。


注:绿色部分为进程1的私有资源,黄色部分为进程2的私有资源,蓝色部分为进程1、进程2的共享资源。

扩展

1leek定位到当前文件尾端,在向文件写入(write)与使用O_APPEND打开(open)文件再写入(write)的区别:

前者是“非原子”操作,假如两个进程都使用前者的方式向文件结尾写入数据,那么有可能产生这样的调度序列:

进程Aleek  进程Bleek 进程Awrite 进程Bwrite

第一个进程写入后,文件(i节点)的偏移已经改变,第二个进程再写会覆盖第一个进程刚写的内容。而是用O_APPENDopen,会使内核每次对文件写之前,都将进程的当前偏移量(file对象中的)设置到文件的尾端处(i节点的当前文件长度)。

 

注意对于多个进程打开同一文件的情况,每个进程都有它自己的文件表项file对象),其中有它自己的文件位移量,所以对于多个进程读同一文件都能正确工作。但是,当多个进程写同一文件时,则可能产生预期不到的结果。(可以使用preadpwrite)。

总结:两个独立进程打开同一文件,对应不同的file对象,每个进程调用close只影响本进程的“打开文件计数”(file对象的引用计数)。

目录
相关文章
|
4天前
|
存储 网络协议 Linux
【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件
本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。
50 34
|
8天前
|
消息中间件 Linux C++
c++ linux通过实现独立进程之间的通信和传递字符串 demo
的进程间通信机制,适用于父子进程之间的数据传输。希望本文能帮助您更好地理解和应用Linux管道,提升开发效率。 在实际开发中,除了管道,还可以根据具体需求选择消息队列、共享内存、套接字等其他进程间通信方
40 16
|
1月前
|
消息中间件 Linux
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
119 20
|
2月前
|
Ubuntu Linux Go
golang编译成Linux可运行文件
本文介绍了如何在 Linux 上编译和运行 Golang 程序,涵盖了本地编译和交叉编译的步骤。通过这些步骤,您可以轻松地将 Golang 程序编译成适合 Linux 平台的可执行文件,并在目标服务器上运行。掌握这些技巧,可以提高开发和部署 Golang 应用的效率。
273 14
|
2月前
|
存储 NoSQL Linux
linux积累-core文件是干啥的
核心文件是Linux系统在程序崩溃时生成的重要调试文件,通过分析核心文件,开发者可以找到程序崩溃的原因并进行调试和修复。本文详细介绍了核心文件的生成、配置、查看和分析方法
159 6
|
2月前
|
存储 NoSQL Linux
linux之core文件如何查看和调试
通过设置和生成 core 文件,可以在程序崩溃时获取详细的调试信息。结合 GDB 等调试工具,可以深入分析 core 文件,找到程序崩溃的具体原因,并进行相应的修复。掌握这些调试技巧,对于提高程序的稳定性和可靠性具有重要意义。
417 6
|
8月前
|
监控 Linux 应用服务中间件
探索Linux中的`ps`命令:进程监控与分析的利器
探索Linux中的`ps`命令:进程监控与分析的利器
167 13
|
7月前
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能
|
7月前
|
弹性计算 Linux 区块链
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
220 4
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
|
6月前
|
算法 Linux 调度
探索进程调度:Linux内核中的完全公平调度器
【8月更文挑战第2天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。本文将深入探讨Linux内核中的完全公平调度器(Completely Fair Scheduler, CFS),一个旨在提供公平时间分配给所有进程的调度器。我们将通过代码示例,理解CFS如何管理运行队列、选择下一个运行进程以及如何对实时负载进行响应。文章将揭示CFS的设计哲学,并展示其如何在现代多任务计算环境中实现高效的资源分配。