Facebook人工智能负责人:我们可以教机器学习常识

简介:

神经网络可以为人工智能系统提供常识功能,到目前为止,只有人类才拥有常识的特质。

尽管人类里个体的常识也不尽相同,“常识”其实是个颇为模糊的概念,常识是指在一个复杂的情景中做出一个合理和好的决策,而做决策的基础是利用自己的经验和对世界的理解,而不是依靠结构化的信息;而人工智能要做到这一点是很麻烦的。

常识是一种直觉,是人类的一个概念,但据Facebook 人工智能(AI)研究团队的主管Yann LeCun介绍,神经网络和机器视觉的飞速发展有朝一日可以让软件拥有常识功能。

LeCun在接受《麻省理工学院技术评论》记者采访时表示,在神经网络这方面仍“有待”努力,机器视觉需用到神经网络。

 Facebook人工智能负责人:我们可以教机器学习常识

神经网络是一个模拟人类大脑结构的人工系统,神经网络与先进机器视觉结合在一起,就可以从图像中提取数据并用于任务和决策,LeCun表示,其结果就是常识功能。

例如,如果一个图像里有一个主要物件,机器就可以利用足够多的物件类别数据识别一些特定的物件,如狗、植物或汽车。而现在有些AI系统还可以认识更抽象的分类,如婚礼、日落和风景。

LeCun表示,在五年前这是不可能的,而现在随着机器被赋予视觉后,机器的专业知识也在增长。

人工智能目前仍只局限于人类训练过的特定区域。一个婚礼上的一只狗的图像送给人工智能系统后,如果AI之前未见过这种图,AI就不能理解图像的内涵意义,其响应极有可能就是LeCun称之为 “垃圾”的东西。因此说AI缺乏常识。

Facebook希望改变这种现状。LeCun表示,你可以通过语言与智能系统互动,使其识别物件,但“语言是一种非常低带宽的信道”,人类因为有丰富的背景知识,可以帮助他们理解语言,而机器目前还不能实时联系上下文内容模拟常识功能。

解决该问题的方法大可以通过视觉学习和诸如图像和视频流等媒体达到。

LeCun 表示,“如果你告诉机器说”这是智能手机”,“这是压路机”,“有些东西可以推得动,也有些东西是推不动的”,或许这机器就可以学习世间万物运行的基础知识。这有点像婴儿的学习过程。”

LeCun 称,“在我们真正想做的事情里,其中有一条就是让机器获得大量代表现实世界限制的事实,其做法是通过视频或其他渠道观察这世界。如此,机器最后就可以获得常识。”

智能机器有能力观察世界后,上下文的缺口就可以堵上,人工智能就大有可能产生一个大飞跃,不再停滞在程序算法和答案集合的层次上。例如,Facebook想在有些领域有所突破,例如,AI系统查看了几个帧以后可以预测未来的事件。

LeCun表示,“如果我们能够训练出这样的系统,我们认为我们就已经开发出了无监督学习系统的核心。我认为,这一块极有可能大有可为。其应用不一定是视觉。我们推动人工智能发展工作的大头也在这一块。”





原文发布时间为:2017年3月13日
本文作者:作者:孙博
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
22天前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
84 27
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
51 12
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
109 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
84 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
1月前
|
机器学习/深度学习 人工智能 算法
探索人工智能与机器学习的融合之路
在本文中,我们将探讨人工智能(AI)与机器学习(ML)之间的紧密联系以及它们如何共同推动技术革新。我们将深入分析这两种技术的基本概念、发展历程和当前的应用趋势,同时讨论它们面临的挑战和未来的发展方向。通过具体案例研究,我们旨在揭示AI与ML结合的强大潜力,以及这种结合如何为各行各业带来革命性的变化。
48 0
|
2月前
|
机器学习/深度学习 人工智能 自动驾驶
揭秘AI:机器学习如何改变我们的世界
在这篇文章中,我们将深入探讨机器学习如何改变我们的世界。从自动驾驶汽车到智能医疗诊断,机器学习正在逐步渗透到我们生活的每一个角落。我们将通过实例和代码示例,揭示机器学习的工作原理,以及它如何影响我们的生活。无论你是科技爱好者,还是对人工智能充满好奇的普通读者,这篇文章都将为你打开一扇新的大门,带你走进机器学习的世界。
39 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
人工智能与机器学习:解锁数据洞察力的钥匙
人工智能与机器学习:解锁数据洞察力的钥匙