Hadoop工具如何形成SAP Hana的大数据平台

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

自2008年以来,SAP Hana一直是领先的数据库管理系统之一。它比许多其他数据库管理解决方案能够更有效地处理数据,主要是因为它可以使用一些最先进的Hadoop工具。没有Hadoop,大多数SAP Hana数据库将是相对无用的。访问大多数数据集将是困难的,特别是在它们存储原始数据的时候。

Hadoop工具如何形成SAP Hana的大数据平台

为什么Hadoop是SAP Hana的骨干

迈克尔·考克斯和戴维·埃尔斯沃斯在1997年发表的“数据可视化应用控制需求调查”一文中提出了大数据这一术语。然而,大数据的应用直到最近才变得真正可行。

这个问题与存储容量无关。云计算的进步地指数级增加了人们存储数据的能力。然而,在存储数据后,访问数据是另一个问题。大多数数据提取工具可以从存储数TB数据的数据阵列中获取。据数据科学中心称,它将一些应用的数据可访问性提高了109%。

许多数据已经以非结构化格式存储,这可能难以提取,开发Hadoop来使流程更容易。

一些SAP Hana解决方案允许用户存储高达4.6TB的数据。然而,数据通常以不同的文件类型存储,这些文件类型很难以一致的格式提取和组织。Hadoop使得这个过程更加简单容易。

SAP Hana如何与Hadoop集成

将SAP Hana与Hadoop集成可以使访问远程数据集群变得更加容易。但是,设置是一个耗时的过程。第一步是设置和安装集群。框架可以通过几种方式构建:

• 内部部署群集本地集群模型是处理需要少于50个节点的特定位置的项目的理想选择。

• 基于云计算的群集。如果用户需要在大型地理位置进行协调,或者需要超过50个节点,那么基于云计算的群集就会更好。

• 确定正确的群集后,用户将需要创建一个测试环境。Cloudera Director是其中一个更好的模型。

• 执行几个测试模拟后,用户可以使用Hadoop来访问SAPHana智能数据。

使用Hadoop与SAP Hana有什么好处?

SAP Hana管理员使用Hadoop有很多原因。许多人选择在HANA上使用SAPUI5,因为它具有特殊的Hadoop基础设施。

成本效益

据戴尔EMC公司介绍,成本效益是整合Hadoop和SAP Hana的主要原因之一。其成本节省取决于存储的数据量,而不管数据是否是结构化的,非结构化,还是半结构化的。

“VMAX所有闪存阵列通常由各种存储组,SAP ANA生产和非生产数据库以及非SAP Hana工作负载组成,每个都具有自己的存储弦CR。因此,整个系统CR是各种底层存储组比率的组合。通过工作负载的正常组合,您可以看到大约2:1的系统CR。该比例可能会更高或更低,具体取决于工作负载组合。当内联压缩与其他VMAXAllFlash节省空间的功能(如虚拟配置,零空间回收和节省空间的快照)相结合时,可实现4:1的总体效率。

快速响应时间

响应时间,可扩展性和可靠性之间存在权衡。Hadoop优先考虑快速响应时间,因此它是管理员需要紧急访问数据的应用程序的理想选择。对于可扩展性更为关注的应用程序,Hadoop可能不太可取。

用户将需要首先概述其优先级。然而,由于大多数SAP Hana用户的优先权是大多数权宜之计,因此Hadoop通常是他们的解决方案。

批处理和挖掘原始数据

使用更原始的大数据提取工具难以获取原始数据。Hadoop使它更容易,这是SAP ana应用程序中广泛使用的主要原因之一。

实体Hadoop框架是SAP ana应用程序的关键

当用户设置SAP Hana数据环境时,几乎总是需要将其与Hadoop进行集成。否则访问非结构化数据将是非常困难的。


原文发布时间为:2017年7月24日

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2天前
|
分布式计算 大数据 数据处理
从Excel到大数据:别让工具限制你的思维!
从Excel到大数据:别让工具限制你的思维!
111 85
|
19天前
|
分布式计算 大数据 流计算
玩转数据:初学者的大数据处理工具指南
玩转数据:初学者的大数据处理工具指南
73 14
|
2月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
89 4
|
2月前
|
存储 人工智能 算法
为什么局域网协作工具是大数据时代的必需品?
本文深入解析了局域网文档协同编辑的技术原理与优势,涵盖分布式系统架构、实时同步技术、操作变换及冲突自由的副本数据类型等核心概念。同时,探讨了其在信息安全要求高的组织、远程与现场混合团队、教育与科研团队等场景的应用,以及国内外技术方案对比和市场未来趋势。
|
3月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
79 4
|
3月前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
3月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
201 2
|
3月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
194 1
|
4月前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
262 4
|
4月前
|
存储 分布式计算 大数据
大数据的工具都有哪些?
【10月更文挑战第9天】大数据的工具都有哪些?
343 1