通信大数据应用未来还有很大的想象空间

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

ZD至顶网CIO与应用频道 04月21日 北京消息:4月20日,以“开放共享、转型创新”为主题的中国信息通信大数据大会将在京召开,共同探讨通信业大数据发展带来的产业机遇和挑战。

随着我国通信业大数据产业生态的逐步建立完善。作为通信业大数据的重要主体,工业和信息化部通信发展司司长闻库指出,电信运营商一方面不断加强大数据基础平台建设,利用大数据提升管理、运营、网络、研发的能力,改变传统运营支撑系统,实现精细化运营,提高客户洞察力和产业服务水平。另一方面利用庞大的数据资源为支撑,盘活数据资产,挖掘数据价值,联合各方推进数据开放共享,创新应用合作和商业模式,实现业务增长和转型。

中国通信信息化部副总经理、CTO范济安提到中国联通的大数据规划和建设的两方面,第一,围绕着已经建成的生产平台,继续扩大数据采集的范围,扩充我们生产平台的规模。第二,对外开放。

中国电信的灯塔大数据平台主要有三个定位:1、做多元数据的整合:电信的数据是非常丰富的,中国电信进行数据挖掘,数据全脱敏,保护用户隐私;2、打造能力平台:控制数据质量、增益,时间数据能力封装;3、创新行业应用:把整个产业链的上中下游,整体打造服务客户的能力。

中国电信云计算中心主任赵慧玲认为,灯塔大数据的能力是看到大数据的本质,经过对人的分析,人与物的连接,人与时间的关联,利用大数据还原事物的原貌,来探索规律的机理,最后预判数据的发展规划。

爱立信长期和运营商在一起,对于电信大数据也有着自己的理解。(中国)商业咨询部总经理袁道唯指出,运营商都在布局大数据战略,特别是中国联通三年前就围绕着大数据制定战略。大数据分析不仅仅是做精准营销,很大程度上我们今天做的是第一步,另外征信做的也是很普遍的,未来大数据对运营商还有更大的意义。

原文发布时间为:2016年4月21日
本文作者:  王聪彬 
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
218 1
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
2月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
3月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
84 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
ly~
|
3月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
289 2
ly~
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
176 3
ly~
|
3月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
584 2
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
494 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
64 2
|
6天前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试