大数据促进中小企业快递航运战略三种方法

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

如今,消费者提高了快递航运期望,这意味着从事快递航运业务的中小企业必须提高他们的战略水平,以应对更加激烈的竞争。大数据被认为是大公司通常采用的技术,而这被中小企业作为一种资源以满足客户的需求,并与行业巨头竞争。

进行大数据分析可以显示规律和趋势,特别是涉及到一个企业的行为时。大多数公司已经在他们的电脑中有大数据,例如Excel表格中的记录,谷歌分析,以及存储在云计算中的数据。但直到最近,许多企业还没有自动化的算法和解决方案来分析和解释这些数据集,进行预测,并作出商业决策。
 
虽然大数据经常与大型企业相关,然而中小企业相对于大公司来说,也有一个主要优势,那就是敏捷性。规模较小的企业可以确定内部和外部的机会,利用资源,提高效率,创造更好的客户体验。考虑到他们的小规模,他们与大公司相比更能迅速采取行动。
 
以下是一些小企业可以利用大数据顺利运作,并提高他们的底线的几种方法:
 
1.智能获得仓库位置。
 
小企业虽然有丰富的仓库位置和可用库存可供选择,但它可能很难找到合适的组合,以优化成本,并为客户提供最佳的经验。但是,为了让企业节省成本,这是至关重要的,他们确定建设仓库理想的地点和目前库存在哪里。大数据帮助小企业做出最好的投资选择,以避免将资金投入低回报的领域,而不是在其他领域直接支出,如研究和发展。
 
大数据可以为企业获取供应链信息,以便他们可以更好地做出商业决策。例如,在线邮资企业Endicia公司使用封装的数据和预测分析,引导电子商务企业管理者做出决策,从生产工厂运输到企业的仓库,降低在途运输的成本和时间,并交付终端消费者。通过大数据查看大多数产品被运到哪里,以及需要多长的时间到达那里,企业主可以确定仓库的位置,并节省大部分时间和成本。最重要的是,小企业可以通过其内部的数据做出这些高影响的决定,而没有外部资源的高昂的成本和密集的市场研究和实施行为。
 
2.优化成本和交货时间的预期。
 
对于通过电子商务购物的客户,如果企业无法达到其预期,他们的销售和利润面临损失的风险。RetailWeek和SHUTL进行的一个调查显示,对于交付业绩的预期两年前为42%,如今91%的消费者希望迅速交付。此外,客户对于冗长的交货时间越来越不能容忍。comScore公司2016年的研究表明,46%消费者已经放弃了购物车,由于他们认为运输的时间过长。这就是大数据的用武之地。
 
采用预测模式的见解和预测能力,大数据提供了估算的更具体的交货时间,允许小企业为客户提供精确的交货时间窗口,并告知小企业的出货最佳时间。
 
企业一般提供一到三天的快递时间,这取决于交通工具的选择。通过仔细检查过去的数据,小企业能够确定一个快递包的在路上的平均时间,并减小目前的客户所等待的时间窗口,最终提高他们的经验。例如,根据前几年的成百上千的包的数据,人们可以开始预测什么时候可能会发生邮件堵塞的事件。
 
虽然人们知道假期期间出货量飙升,预测数据可以让人们洞察全年的情况。它可以让企业主知道将发生确切的交货时间。例如,美国邮政Priority邮件公司提供了一个三天的窗口,一个企业的数据可以更快确定一个特定的路线。这样,企业可以节省资金,使用Priority邮件,而不是Priority邮件快递,并仍然保证包准时交货。
 
预测数据也让一个小企业知道邮局收受包裹的最好时间,以便及时到达其目的地。例如,如果一个小企业在下午1:30到邮局落包,客户的包裹第二天就可以到达,但是如果当天下午4点到邮局落包,那么客户只能在第三天收到包裹。所有这些细节都是可访问的,托运人可以通过电脑查询。
 
从确定最佳仓库位置到缩短到货时间,可以提供深刻的洞察实践方法,大数据对中小企业跟上不断增长的能力起着关键的作用,可以应对激烈的电子商务竞争,满足客户交货要求。
 
3.加快订单履行。
 
订单履行充满了人为错误和延迟时间的可能性。手动执行复杂的命令,可能会导致错过细节,并会犯错。这些操作也很耗费时间,工人必须手动选择每一个包裹的航运运营商和服务。大数据可以通过预测航运承运人,服务和附加组件来自动创建航运标签,加快在仓库货品的出库速度。
 
采用大数据分析的ShippingEasy自动出货预测软件有着显着的效果。自动利用机器学习来自动发货,反过来,可以减少订单和交货时间。例如2422个订单,自动预测可以达到2417个准确率,这些订单只有5个订单需要人工处理。而自动出货服务可以预测数据的整合,并能够帮助企业大幅削减时间和涉及的航运和贴标过程的劳动,并引导这些资源的领域得到增长,如研究和开发。
 
从查明主要仓库位置,到开发高效的实现方法,大数据对于促进小企业的业务发展,起到了至关重要的作用。
原文发布时间为:2016年10月13日
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
6月前
|
机器学习/深度学习 分布式计算 DataWorks
MaxCompute产品使用合集之MaxCompute读取外部表的速度较慢,有什么方法来提升读取速度
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
18天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
61 2
|
26天前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
【10月更文挑战第31天】量子计算凭借其独特的量子比特和量子门技术,为大数据处理带来了革命性的变革。相比传统计算机,量子计算在计算效率、存储容量及并行处理能力上具有显著优势,能有效应对信息爆炸带来的挑战。本文探讨了量子计算如何通过量子叠加和纠缠等原理,加速数据处理过程,提升计算效率,特别是在金融、医疗和物流等领域中的具体应用案例,同时也指出了量子计算目前面临的挑战及其未来的发展方向。
|
30天前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
39 0
|
1月前
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
36 0
|
6月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute产品使用合集之可以使用什么方法将MySQL的数据实时同步到MaxCompute
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4月前
|
存储 机器学习/深度学习 大数据
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
Apache Flink 诚邀您参加 7 月 27 日在杭州举办的阿里云开源大数据 Workshop,了解流式湖仓、湖仓一体架构的最近演进方向,共探企业云上湖仓实践案例。
178 12
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
|
3月前
|
机器学习/深度学习 设计模式 人工智能
面向对象方法在AIGC和大数据集成项目中的应用
【8月更文第12天】随着人工智能生成内容(AIGC)和大数据技术的快速发展,企业面临着前所未有的挑战和机遇。AIGC技术能够自动产生高质量的内容,而大数据技术则能提供海量数据的支持,两者的结合为企业提供了强大的竞争优势。然而,要充分利用这些技术,就需要构建一个既能处理大规模数据又能高效集成机器学习模型的集成框架。面向对象编程(OOP)以其封装性、继承性和多态性等特点,在构建这样的复杂系统中扮演着至关重要的角色。
66 3
|
4月前
|
存储 监控 数据挖掘
云上大数据分析平台:赋能企业决策,挖掘数据金矿
5.3 场景化 针对不同行业和领域的需求特点,云上大数据分析平台将推出更多场景化的解决方案。这些解决方案将结合行业特点和业务场景进行
133 7
|
3月前
|
SQL 分布式计算 数据可视化
基于Hadoop的大数据可视化方法
【8月更文第28天】在大数据时代,有效地处理和分析海量数据对于企业来说至关重要。Hadoop作为一个强大的分布式数据处理框架,能够处理PB级别的数据量。然而,仅仅完成数据处理还不够,还需要将这些数据转化为易于理解的信息,这就是数据可视化的重要性所在。本文将详细介绍如何使用Hadoop处理后的数据进行有效的可视化分析,并会涉及一些流行的可视化工具如Tableau、Qlik等。
124 0
下一篇
无影云桌面