基于SDN,NFV的服务感知网络架构下篇

简介:

本篇文章是继《基于SDN,NFV的服务感知网络架构上篇》对DPI进行进一步的深入解析,分析了在SDN中可能出现的三种部署情况,对第4-7层的业务需求以及业务感知网络架构作了一个深入的介绍。

基于SDN,NFV的服务感知网络架构下篇

在SDN网络中部署DPI

SDN架构包括四个或者更多的层次,包括业务流层,业务应用层,控制层和节点层。下图表示了DPI在用于流量整形、用户分析、QoE和网络安全时可能被嵌入的三个层,仅举几例。这些部署方案允许DPI信息在网络内共享,这样只要进行一次应用识别即可,从而节省了CPU和能耗。统一的DPI简化了管理,因为所有的设备对信息流会共享一个“相似的观点”。拥有提供DPI服务的基础设施最主要的好处是,应用程序开发者不再需要把DPI合并—没有必要推倒重来。

DPI capacity scales up and out with Qosmos ixEngine

三种可能的部署情况:

业务应用层

DPI软件可以相对轻松地被嵌入到业务应用层。然而一些应用程序的重新设计可能需要尽可能减小由于漫长的通信路径造成潜在瓶颈的影响。比如,一些信息流必须通过由节点到SDN控制器再到运行DPI引擎的应用程序这样的路径。信息流被识别后,应用程序发送策略规则到节点引导信息流的流动,所以通常情况下只有一小部分的流量从节点发送到应用程序网络。考虑到可能有延迟,这种DPI部署最好用于时效性不强的应用程序,如分析功能。

控制层

DPI软件可以部署在SDN控制器中,它可以将网络智能应用于自己的控制服务,或者通过北向接口的API发送到网络应用层。节点(例如交换机,网络设备)处理流发送的第一个非空包到SDN控制器用于L4-L7分析,可能使用了OpenFlow协议的一些扩展功能,后文会继续讨论。把DPI放置在控制器中避免了节点带来的成本增长;但是,部分信息流(可能低于10%)必须被转发,从节点到控制器,这可能导致可扩展性和性能的一些问题。一个分布式控制器架构的设计可以最大限度地减少这些问题。

节点层

网络节点也可以运行DPI软件,识别应用程序ID和元数据后,它们还可以:

直接应用预先定义的策略

将此信息发送到SDN控制器或网络应用程序,然后接受策略或规则。

当SDN控制器作为提取信息的接受者,它可以在与网络应用以某种形式对话之后指示节点应用特定的策略。在这之后的所有同一类型的信息流就不需要再被DPI分析了。与其他选择相比,在节点层执行DPI最小化了等待时间,但这种方法也是最昂贵的,因为它需要最大量的DPI实例在网络中。将来,DPI的实例数量可以通过标记或者传送端至端信息的方式来减少,如在最近的IETF草案通过加入网络服务报头(NSH)建议的增强建议。另外还有一些解决方法设想使用标记/标签,配置通道等。

OpenFlow的扩展需要L4-L7设备

OpenFlow作为SDN南向协议,用以携带交换机和SDN控制器之间每条信息流中提取的元数据。这个附加的L4-L7智能将扩展到现有OpenFlow协议中,超越用户可配置的n元组的形式。这些新的“L4-L7的DPI”字段可能成为通用格式,被所有的交换机,控制器和应用程序运用。

这可以在OpenFlow协议中引入的类型—长度—值元素实现,用以支持可选信息的编码,如以下字段。

规则:识别协议、应用程序(App ID)和元数据

操作:诸如丢弃数据包,封装和转发数据包给控制器,或者转发数据包到端口

统计:其中包括计算的元数据,HTTP主机名,HTTP cookie,和供应商特定属性(VSA)

下图展示了应用程序ID、元数据字段和操作如何添加到OpenFlow协议中。

OpenFlow could be extended to better support DPI technology

业务感知网络架构

运营商部署基于SDN和NFV的网络可以利用DPI实现的网络智能来提供新的服务并且可以更好地管理带宽。DPI通过帮助运营商识别和监管他们开展的广泛服务和应用,为运营商针对他们的网络提供更多的控制权。通过计算和DPI技术,这都是可以实现的。DPI将使控制器和应用程序做出更明智的决定,为网络运营商节省成本,增加创收机会。


作者:何妍 

来源:51CTO

相关文章
|
3月前
|
5G 网络安全 SDN
网络功能虚拟化(NFV)和软件定义网络(SDN):赋能5G网络灵活、智能演进的关键
网络功能虚拟化(NFV)和软件定义网络(SDN):赋能5G网络灵活、智能演进的关键
91 3
|
3月前
|
传感器 物联网 人机交互
物联网:物联网,作为新一代信息技术的重要组成部分,通过智能感知、识别技术与普适计算等通信感知技术,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现了物物相连、人物相连,开启了万物互联的新时代。
在21世纪,物联网(IoT)作为新一代信息技术的核心,正以前所未有的速度重塑生活、工作和社会结构。本文首先介绍了物联网的概念及其在各领域的广泛应用,强调其技术融合性、广泛的应用范围以及数据驱动的特点。接着,详细阐述了物联网行业的现状和发展趋势,包括政策支持、关键技术突破和应用场景深化。此外,还探讨了物联网面临的挑战与机遇,并展望了其未来在技术创新和模式创新方面的潜力。物联网行业正以其独特魅力引领科技发展潮流,有望成为推动全球经济发展的新引擎。
|
3月前
|
机器学习/深度学习 人工智能 算法
首个像人类一样思考的网络!Nature子刊:AI模拟人类感知决策
【9月更文挑战第8天】近日,《自然》子刊发表的一篇关于RTNet神经网络的论文引起广泛关注。RTNet能模拟人类感知决策思维,其表现与人类相近,在反应时间和准确率上表现出色。这项研究证明了神经网络可模拟人类思维方式,为人工智能发展带来新启示。尽管存在争议,如是否真正理解人类思维机制以及潜在的伦理问题,但RTNet为人工智能技术突破及理解人类思维机制提供了新途径。论文详细内容见《自然》官网。
75 3
|
4月前
|
边缘计算 物联网 5G
软件定义网络(SDN)的未来趋势:重塑网络架构,引领技术创新
【8月更文挑战第20天】软件定义网络(SDN)作为新兴的网络技术,正在逐步重塑网络架构,引领技术创新。随着5G、人工智能、边缘计算等技术的不断发展,SDN将展现出更加广阔的应用前景和市场潜力。未来,SDN有望成为主流网络技术,并在各行各业推动数字化转型。让我们共同期待SDN技术带来的更加智能、安全和高效的网络体验。
|
4月前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
6月前
|
SDN 网络虚拟化 虚拟化
云数据中心中的SDN/NFV应用
【6月更文挑战第9天】计算和存储虚拟化技术在云计算IDC中已基本满足需求,但网络成为新瓶颈,主要问题包括虚拟化环境下的网络配置复杂度增加、拓扑展现困难和无法动态调整资源。
|
7月前
|
安全 SDN 网络虚拟化
SDN和NFV笔记
SDN和NFV笔记
141 1
|
7月前
|
网络安全 SDN 网络虚拟化
《计算机网络简易速速上手小册》第8章:软件定义网络(SDN)与网络功能虚拟化(NFV)(2024 最新版)
《计算机网络简易速速上手小册》第8章:软件定义网络(SDN)与网络功能虚拟化(NFV)(2024 最新版)
168 2
|
7月前
|
存储 运维 安全
SDN 网络编排与服务
【2月更文挑战第30天】网络编排是基于业务需求,对逻辑网络服务进行有序组织和安排,通过控制器构建满足需求的网络服务。
|
7月前
|
人工智能 安全 大数据
SDN(软件定义网络)——重塑网络架构的新视角
SDN(软件定义网络)是网络架构革新的关键,通过分离控制与数据平面,实现网络的灵活、高效管理。未来,SDN将更广泛应用于各行业,与云计算、大数据、AI融合,推动数字化转型。开放与标准化的趋势将促进SDN生态发展,提供以业务需求为导向、智能化自动化管理及增强网络安全的新视角。SDN将在更多领域扮演重要角色,支持网络技术的创新与进步。
下一篇
DataWorks