Prometheus——进行服务器性能监控的一件法宝

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
日志服务 SLS,月写入数据量 50GB 1个月
可观测可视化 Grafana 版,10个用户账号 1个月
简介:

最近一直在思考如何对线上服务做深度监控。基础的服务可用性监控很简单,定期Ping即可。但是怎样才能监控服务器的一些更加关键的数据呢?比如,每一个API Point的请求次数(QPS),最大响应时间,平均响应时间等。最终我希望实现的效果是有一个Dashboard,我可以清楚地看到各种参数曲线,对服务器的运行情况了然于胸。

绘制Dashboard不难,目前提供数据可视化的工具很多,随便选一个都能满足需要。关键问题是,怎样将整个流程打通?

服务器该以怎样的形式暴露出数据?

数据怎样被收集和存储起来?

存储起来的数据怎样提供给数据可视化工具?

怎样做到足够灵活,可以可视化自己感兴趣的任意数据?

Prometheus

像QPS和响应时间这些数据,外部工具是没办法直接拿到的,必须要服务器以某种方式将数据暴露出来。最常见的做法是写日志。比如Nginx,每一条请求对应一个日志,日志中有响应时间这个字段。通过对日志分析,我们就可以得到QPS,最大响应时间,平均响应时间等,再通过可视化工具即可绘制我们想要的Dashboard。

日志这个方法固然是可行的,但是还有更好的方法。这个方法就是时序数据库(Time Series Database)。时序数据库简单来说就是存储随时间变化的数据的数据库。什么是随时间变化的数据呢?举个简单的例子,比如,CPU使用率,典型的随时间变化的量,这一秒是50%,下一秒也许就是80%了。或者是温度,今天是20度,明天可能就是18度了。

Prometheus就是一个用Go编写的时序数据库,官网对其的优点介绍的很清楚,这里就不再赘述了。总之,使用简单,功能强大。

服务器配置房间

安装

安装直接去官网下载对应的安装包即可。当然,如果你是Mac用户的话,brew永远不会让你失望brew install prometheus。

格式

Prometheus获取数据的策略是Pull而不是Push,也就是说,它会自己去抓取,而不用你来推送。抓取使用的是HTTP协议,在配置文件中指定目标程序的端口,路径及间隔时间即可。这也就意味着任何程序想要使用Prometheus存储数据都很简单,定义一个HTTP接口即可。

Prometheus的数据格式是简单的文本格式,可以直接阅读。其中,#号开头的是注释,除此之外,每一行一个数据项,数据名在前,值在后。{}中是标签,一条数据可以有多个标签。

配置

Prometheus使用YAML进行配置。global配置一些全局信息,scrape_configs配置具体想要抓取的目标。这段配置的含义是:启动一个叫做go-test的任务,每隔五秒钟,访问localhost:8888/metrics获取数据。

测试程序

我们来写一个程序测试一下Prometheus的功能。虽然可以手动返回Prometheus需要的数据,但是使用开发好的客户端会更加方便。

这里我们使用Go语言,编写一个简单的服务器和客户端。客户端会以一个稳定的速度请求服务器的/test路径,但是每两分钟会加大流量,持续30秒再回到之前的水平。服务器95%的情况下会花费50ms进行响应,还有5%的情况下会花费100ms。

这里我们定义了两个指标,httpRequestCount记录HTTP的请求数,httpRequestDuration记录响应时间,他们都有一个endpoint标签用于记录请求路径。这两个指标分别是Counter类型和Summary类型,Prometheus定义了四种指标类型,基本涵盖了各种用例场景,具体可以去看相关文档。简单来说,Counter类型的数据表示一个只会向上增加的数据,比如请求数。而Summary类型的数据表示一个按区间分布的数据,比如响应时间或者请求体大小。


 
 
  1. /** @Author: CJ Ting* @Date: 2017-03-12 17:27:23* @Last Modified by: CJ Ting* @Last Modified time: 2017-03-12 23:49:55 */packagemainimport("log""math/rand""net/http""time""github.com/prometheus/client_golang/prometheus""github.com/prometheus/client_golang/prometheus/promhttp")varhttpRequestCount=prometheus.NewCounterVec(prometheus.CounterOpts{Name:"http_request_count",Help:"http request count",},[]string{"endpoint"},)varhttpRequestDuration=prometheus.NewSummaryVec(prometheus.SummaryOpts{Name:"http_request_duration",Help:"http request duration",},[]string{"endpoint"},)funcinit(){prometheus.MustRegister(httpRequestCount)prometheus.MustRegister(httpRequestDuration)}funcmain(){http.Handle("/metrics",promhttp.Handler())http.HandleFunc("/test",handler)gofunc(){http.ListenAndServe(":8888",nil)}()startClient()doneChan:=make(chanstruct{})<-doneChan}funchandler(whttp.ResponseWriter,r*http.Request){start:=time.Now()path:=r.URL.PathhttpRequestCount.WithLabelValues(path).Inc()n:=rand.Intn(100)ifn>=95{time.Sleep(100*time.Millisecond)}else{time.Sleep(50*time.Millisecond)}elapsed:=(float64)(time.Since(start)/time.Millisecond)httpRequestDuration.WithLabelValues(path).Observe(elapsed)}funcstartClient(){sleepTime:=1000gofunc(){ticker:=time.NewTicker(2*time.Minute)for{<-ticker.CsleepTime-ticker.CsleepTime=200<-time.After(30*time.Second)sleepTime=1000}}()fori:=0;i<100;i++{gofunc(){for{sendRequest()time.Sleep((time.Duration)(sleepTime)*time.Millisecond)}}()}}funcsendRequest(){resp,err:=http.Get("http://localhost:8888/test")iferr!=nil{log.Println(err)return}resp.Body.Close()}copy code  

启动Prometheusprometheus -config.file config.yml以后,再启动我们的测试程序go run test.go。打开Prometheus控制台localhost:9090/targets就可以看到Prometheus正在抓取数据,一切正常。

抓取数据,一切正常

控制台

Prometheus的一个强大之处在于可以使用各种函数和操作符来查询数据。在上面的测试程序中,每个数据都带有endpoint这个标签,表示请求的路径。

打开Prometheus的控制台http://localhost:9090/graph,点击console标签页,输入http_request_count{endpoint="/a"}就可以查询路径为/a的API Point到目前为止的总请求数。

如果想看QPS的话,可以使用自带的函数rate,rate(http_request_count[10s])表示以10s作为时间单元来统计QPS。

Prometheus的控制台自带一个简单的绘图系统,点击graph标签页,输入表达式就可以看到图表。

例如输入rate(http_request_count{endpoint="/test"}[10s])就可以看到我们测试程序中/test路径的QPS,从图中可以明显发现,每隔一段时间就会有一个波峰流量。

每过一个时间段就会有波峰流量

httpRequestDuration是一个Summary类型的指标,比简单的Counter要复杂,会生成三个数据项。分别是http_request_duration_sum,表示响应时间加在一起的总和。

http_request_duration_count,表示响应时间的总个数以及http_request_duration,表示响应时间的分布情况,这个数据项会使用quantile标签对响应时间进行分组。

如下图所示,quantile=0.5值为50,表示50%的请求响应时间都在50ms以下。quantile=0.9的值为54,表示90%的请求响应时间都在54ms以下。但是,quantile=0.99的值为103,表示99%的请求响应时间在103ms以下。这就说明了一个问题,那就是极个别的请求耗费了大量时间。

极个别的请求消耗大量时间

通过使用表达式http_request_duration_sum / http_request_duration_count,我们可以得到平均响应时间,如下图。

当然,这个图的作用不大(平均数往往反映不了什么问题),不像上图那样,我们无法看出有部分请求花费了大量时间。

无法看出部分请求消耗大量时间

以上只是对数据项的最简单利用,Prometheus自带了很多函数和操作符,可以方便地对数据进行处理,具体可以参考官方文档。

Grafana

Prometheus自带的图表是非常基础的,只能用来临时查看一下数据。如果要构建强大的Dashboard,还是需要更加专业的工具才行。这个工具就是Grafana。

安装

同样是去官网下载相应的安装包。Mac用户可以再次感受到brew的优越性。brew install grafana。

启动

直接用默认配置就挺好的。在Mac上,启动指令如下。

Grafana默认监听在3000端口上,默认用户名和密码都是admin。

设置

输入用户名和密码以后,进入Grafana页面。第一件事是要设置数据源(Data Source),即Grafana从什么地方获取数据,选择Prometheus即可。

选择即可

数据源设置好以后,接下来就是创建Dashboard了。Dashboard里面可以放置很多“组件”。比如图表,状态值,表格,文字等。

这里我们选择Graph图表,Grafana会创建一个默认的空图表。

点击图表标题,选择Edit来编辑图表参数。最重要的参数就是Metrics标签里的Query字段,这个字段定义了我们的图表到底要展示什么数据。

输入rate(http_request_count{endpoint="/test"}[10s]),就可以看到/test路径的QPS曲线了。

观察曲线

同理,在Query中输入http_request_duration就可以得到响应时间曲线。通过使用Prometheus提供的操作符和函数,我们可以对数据进行我们想要的任意可视化,十分灵活。

在这两个工具的配合使用下,对服务器信息的监控变得非常简单。首先,服务器定义一个HTTP接口,暴露出想要监控的数据,然后使用Prometheus收集并存储这些数据,最后在Grafana中绘制这些数据。一个完整的监控方案就诞生了。

当然,在实际系统中,还缺少了一个环节,那就是报警。监控发现问题以后,需要马上报警通知相关的维护人员。这是另外一个话题了,以后再介绍。


本文作者:佚名

来源:51CTO

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
相关文章
|
4月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
533 3
|
3月前
|
存储 数据采集 Prometheus
Grafana Prometheus Altermanager 监控系统
Grafana、Prometheus 和 Alertmanager 是一套强大的开源监控系统组合。Prometheus 负责数据采集与存储,Alertmanager 处理告警通知,Grafana 提供可视化界面。本文简要介绍了这套系统的安装配置流程,包括各组件的下载、安装、服务配置及开机自启设置,并提供了访问地址和重启命令。适用于希望快速搭建高效监控平台的用户。
205 20
|
3月前
|
Prometheus 监控 Cloud Native
Prometheus+Grafana监控Linux主机
通过本文的步骤,我们成功地在 Linux 主机上使用 Prometheus 和 Grafana 进行了监控配置。具体包括安装 Prometheus 和 Node Exporter,配置 Grafana 数据源,并导入预设的仪表盘来展示监控数据。通过这种方式,可以轻松实现对 Linux 主机的系统指标监控,帮助及时发现和处理潜在问题。
292 7
|
3月前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
419 3
|
3月前
|
Prometheus 监控 Cloud Native
无痛入门Prometheus:一个强大的开源监控和告警系统,如何快速安装和使用?
Prometheus 是一个完全开源的系统监控和告警工具包,受 Google 内部 BorgMon 系统启发,自2012年由前 Google 工程师在 SoundCloud 开发以来,已被众多公司采用。它拥有活跃的开发者和用户社区,现为独立开源项目,并于2016年加入云原生计算基金会(CNCF)。Prometheus 的主要特点包括多维数据模型、灵活的查询语言 PromQL、不依赖分布式存储、通过 HTTP 拉取时间序列数据等。其架构简单且功能强大,支持多种图形和仪表盘展示模式。安装和使用 Prometheus 非常简便,可以通过 Docker 快速部署,并与 Grafana 等可
928 2
|
5月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
330 62
|
5月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
195 60
|
4月前
|
存储 Prometheus 监控
监控堆外第三方监控工具Prometheus
监控堆外第三方监控工具Prometheus
98 3
|
4月前
|
存储 Prometheus 运维
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案。该集成结合了ARMS的基础设施监控能力和Prometheus的灵活配置及社区支持,实现了全面、精准的系统状态、性能和错误监控,提升了应用的稳定性和管理效率。通过统一的数据视图和高级查询功能,帮助企业有效应对云原生挑战,促进业务的持续发展。
127 3
|
4月前
|
Prometheus 监控 Cloud Native
在 HBase 集群中,Prometheus 通常监控哪些类型的性能指标?
在 HBase 集群中,Prometheus 监控关注的核心指标包括 Master 和 RegionServer 的进程存在性、RPC 请求数、JVM 内存使用率、磁盘和网络错误、延迟和吞吐量、资源利用率及 JVM 使用信息。通过 Grafana 可视化和告警规则,帮助管理员实时监控集群性能和健康状况。