Java实现高斯模糊和图像的空间卷积

简介:

高斯模糊

高斯模糊(英语:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像杂讯以及降低细节层次。这种模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果。 从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。图像与圆形方框模糊做卷积将会生成更加精确的焦外成像效果。由于高斯函数的傅立叶变换是另外一个高斯函数,所以高斯模糊对于图像来说就是一个低通滤波器。

高斯模糊运用了高斯的正态分布的密度函数,计算图像中每个像素的变换。

根据一维高斯函数,可以推导得到二维高斯函数:

其中r是模糊半径,r^2 = x^2 + y^2,σ是正态分布的标准偏差。在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆。分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。

其实,在iOS上实现高斯模糊是件很容易的事儿。早在iOS 5.0就有了Core Image的API,而且在CoreImage.framework库中,提供了大量的滤镜实现。

+(UIImage *)coreBlurImage:(UIImage *)image withBlurNumber:(CGFloat)blur 
{ 
    CIContext *context = [CIContext contextWithOptions:nil]; 
    CIImage *inputImage= [CIImage imageWithCGImage:image.CGImage]; 
    //设置filter
    CIFilter *filter = [CIFilter filterWithName:@"CIGaussianBlur"]; 
    [filter setValue:inputImage forKey:kCIInputImageKey]; [filter setValue:@(blur) forKey: @"inputRadius"]; 
    //模糊图片
    CIImage *result=[filter valueForKey:kCIOutputImageKey]; 
    CGImageRef outImage=[context createCGImage:result fromRect:[result extent]];       
    UIImage *blurImage=[UIImage imageWithCGImage:outImage];           
    CGImageRelease(outImage); 
    return blurImage;
}

在Android上实现高斯模糊也可以使用原生的API—–RenderScript,不过需要Android的API是17以上,也就是Android 4.2版本。

    /**      * 使用RenderScript实现高斯模糊的算法      * @param bitmap      * @return      */
    public Bitmap blur(Bitmap bitmap){
        //Let's create an empty bitmap with the same size of the bitmap we want to blur
        Bitmap outBitmap = Bitmap.createBitmap(bitmap.getWidth(), bitmap.getHeight(), Bitmap.Config.ARGB_8888);
        //Instantiate a new Renderscript
        RenderScript rs = RenderScript.create(getApplicationContext());
        //Create an Intrinsic Blur Script using the Renderscript
        ScriptIntrinsicBlur blurScript = ScriptIntrinsicBlur.create(rs, Element.U8_4(rs));
        //Create the Allocations (in/out) with the Renderscript and the in/out bitmaps
        Allocation allIn = Allocation.createFromBitmap(rs, bitmap);
        Allocation allOut = Allocation.createFromBitmap(rs, outBitmap);
        //Set the radius of the blur: 0 < radius <= 25
        blurScript.setRadius(20.0f);
        //Perform the Renderscript
        blurScript.setInput(allIn);
        blurScript.forEach(allOut);
        //Copy the final bitmap created by the out Allocation to the outBitmap
        allOut.copyTo(outBitmap);
        //recycle the original bitmap
        bitmap.recycle();
        //After finishing everything, we destroy the Renderscript.
        rs.destroy();

        return outBitmap;

    }

我们开发的图像框架cv4j也提供了一个滤镜来实现高斯模糊。

GaussianBlurFilter filter = new GaussianBlurFilter();
filter.setSigma(10);

RxImageData.bitmap(bitmap).addFilter(filter).into(image2);

可以看出,cv4j实现的高斯模糊跟RenderScript实现的效果一致。

其中,GaussianBlurFilter的代码如下:

public class GaussianBlurFilter implements CommonFilter {
    private float[] kernel;
    private double sigma = 2;
    ExecutorService mExecutor;
    CompletionService<Void> service;

    public GaussianBlurFilter() {
        kernel = new float[0];
    }

    public void setSigma(double a) {
        this.sigma = a;
    }

    @Override
    public ImageProcessor filter(final ImageProcessor src){
        final int width = src.getWidth();
        final int height = src.getHeight();
        final int size = width*height;
        int dims = src.getChannels();
        makeGaussianKernel(sigma, 0.002, (int)Math.min(width, height));

        mExecutor = TaskUtils.newFixedThreadPool("cv4j",dims);
        service = new ExecutorCompletionService<>(mExecutor);

        // save result
        for(int i=0; i<dims; i++) {

            final int temp = i;
            service.submit(new Callable<Void>() {
                public Void call() throws Exception {
                    byte[] inPixels = src.toByte(temp);
                    byte[] temp = new byte[size];
                    blur(inPixels, temp, width, height); // H Gaussian
                    blur(temp, inPixels, height, width); // V Gaussain
                    return null;
                }
            });
        }

        for (int i = 0; i < dims; i++) {
            try {
                service.take();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        mExecutor.shutdown();
        return src;
    }

    /**      * <p> here is 1D Gaussian        , </p>      *      * @param inPixels      * @param outPixels      * @param width      * @param height      */
    private void blur(byte[] inPixels, byte[] outPixels, int width, int height)     {
        int subCol = 0;
        int index = 0, index2 = 0;
        float sum = 0;
        int k = kernel.length-1;
        for(int row=0; row<height; row++) {
            int c = 0;
            index = row;
            for(int col=0; col<width; col++) {
                sum = 0;
                for(int m = -k; m< kernel.length; m++) {
                    subCol = col + m;
                    if(subCol < 0 || subCol >= width) {
                        subCol = 0;
                    }
                    index2 = row * width + subCol;
                    c = inPixels[index2] & 0xff;
                    sum += c * kernel[Math.abs(m)];
                }
                outPixels[index] = (byte)Tools.clamp(sum);
                index += height;
            }
        }
    }

    public void makeGaussianKernel(final double sigma, final double accuracy, int maxRadius) {
        int kRadius = (int)Math.ceil(sigma*Math.sqrt(-2*Math.log(accuracy)))+1;
        if (maxRadius < 50) maxRadius = 50;         // too small maxRadius would result in inaccurate sum.
        if (kRadius > maxRadius) kRadius = maxRadius;
        kernel = new float[kRadius];
        for (int i=0; i<kRadius; i++)               // Gaussian function
            kernel[i] = (float)(Math.exp(-0.5*i*i/sigma/sigma));
        double sum;                                 // sum over all kernel elements for normalization
        if (kRadius < maxRadius) {
            sum = kernel[0];
            for (int i=1; i<kRadius; i++)
                sum += 2*kernel[i];
        } else
            sum = sigma * Math.sqrt(2*Math.PI);

        for (int i=0; i<kRadius; i++) {
            double v = (kernel[i]/sum);
            kernel[i] = (float)v;
        }
        return;
    }
}

空间卷积

二维卷积在图像处理中会经常遇到,图像处理中用到的大多是二维卷积的离散形式。

以下是cv4j实现的各种卷积效果。

cv4j 目前支持如下的空间卷积滤镜

filter 名称 作用
ConvolutionHVFilter 卷积 模糊或者降噪
MinMaxFilter 最大最小值滤波 去噪声
SAPNoiseFilter 椒盐噪声 增加噪声
SharpFilter 锐化 增强
MedimaFilter 中值滤波 去噪声
LaplasFilter 拉普拉斯 提取边缘
FindEdgeFilter 寻找边缘 梯度提取
SobelFilter 梯度 获取x、y方向的梯度提取
VarianceFilter 方差滤波 高通滤波
MaerOperatorFilter 马尔操作 高通滤波
USMFilter USM 增强

总结

cv4j 是gloomyfish和我一起开发的图像处理库,目前还处于早期的版本。

目前已经实现的功能:

这周,我们对 cv4j 做了较大的调整,对整体架构进行了优化。还加上了空间卷积功能(图片增强、锐化、模糊等等)。接下来,我们会做二值图像的分析(腐蚀、膨胀、开闭操作、轮廓提取等等)


作者:fengzhizi715

来源:51CTO

相关文章
|
4月前
|
存储 算法 Java
解释 Java 堆空间和垃圾收集
【8月更文挑战第22天】
39 0
|
2月前
|
存储 XML Java
如何在 Java 中将常见文档转换为 PNG 图像数组
如何在 Java 中将常见文档转换为 PNG 图像数组
19 1
|
4月前
|
存储 安全 Java
深入理解操作系统:从用户空间到内核空间的旅程深入浅出Java异常处理机制
【8月更文挑战第28天】在数字世界的海洋中,操作系统是承载软件与硬件沟通的巨轮。本文将揭开操作系统神秘的面纱,通过一次思维的航行,带领读者从应用程序的用户空间出发,穿越系统调用的大门,深入内核空间的心脏。我们将探索进程管理、内存分配、文件系统等核心概念,并借助代码示例,揭示操作系统背后的魔法。准备好了吗?让我们启航,去发现那些隐藏在日常计算活动背后的秘密。 【8月更文挑战第28天】在Java编程世界中,异常处理就像是我们生活中的急救包。它不仅保护程序不因意外而崩溃,还确保了代码的健壮性和可靠性。本文将通过简洁明了的语言和生动的比喻,带你了解Java异常处理的奥秘,从基本的try-catch语
|
5月前
|
数据采集 安全 Java
Java Selenium WebDriver:代理设置与图像捕获
Java Selenium WebDriver:代理设置与图像捕获
|
5月前
|
存储 Java 程序员
Java面试题:请解释Java中的永久代(PermGen)和元空间(Metaspace)的区别
Java面试题:请解释Java中的永久代(PermGen)和元空间(Metaspace)的区别
242 11
|
5月前
|
存储 Java 编译器
Java面试题:描述方法区(Method Area)的作用以及它在JVM中的演变(从永久代到元空间)
Java面试题:描述方法区(Method Area)的作用以及它在JVM中的演变(从永久代到元空间)
74 3
|
6月前
|
Java
2022蓝桥杯大赛软件类国赛Java大学B组 左移右移 空间换时间+双指针
2022蓝桥杯大赛软件类国赛Java大学B组 左移右移 空间换时间+双指针
52 3
|
6月前
|
算法 Java
垃圾回收机制(Garbage Collection,GC)是Java语言的一个重要特性,它自动管理程序运行过程中不再使用的内存空间。
【6月更文挑战第24天】Java的GC自动回收不再使用的内存,关注堆中的对象。通过标记-清除、复制、压缩和分代等算法识别无用对象。GC分为Minor、Major和Full类型,针对年轻代、老年代或整个堆进行回收。性能优化涉及算法选择和参数调整。
80 3
|
5月前
|
Ubuntu Java Linux
Java演进问题之Java 16对元空间优化如何解决
Java演进问题之Java 16对元空间优化如何解决
|
6月前
|
算法 Java
Java垃圾回收(Garbage Collection,GC)是Java虚拟机(JVM)的一种自动内存管理机制,用于在运行时自动回收不再使用的对象所占的内存空间
【6月更文挑战第18天】Java的GC自动回收内存,包括标记清除(产生碎片)、复制(效率低)、标记整理(兼顾连续性与效率)和分代收集(区分新生代和老年代,用不同算法优化)等策略。现代JVM通常采用分代收集,以平衡性能和内存利用率。
74 3