百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

简介:

百度将 Ring Allreduce 算法引入深度学习

Ring Allreduce 本是 HPC (高性能计算)领域的一项技术。日前,百度硅谷 AI 实验室已成功将其移植到深度学习平台,借此来加速 GPU 之间的数据传输速率。目前,在 GPU 并行计算中,它们之间的通信瓶颈是制约深度学习模型训练速度的主要障碍之一。百度宣布,Ring Allreduce 算法的引入将移除该瓶颈,大幅提升多 GPU 和分布式计算环境下的深度学习模型运算效率。雷锋网获得消息,该技术已被百度成功应用于语音识别。

该算法以库和 Tensorflow 补丁的形式向开发者开源,分别为 baidu-allreduce 和 tensorflow-allreduce,已在 GitHub 上线。

 GitHub:https://github.com/baidu-research/baidu-allreduce

https://github.com/baidu-research/tensorflow-allreduce

详情:http://www.leiphone.com/news/201702/QaSmvdQNbiY4CxBy.html

百度博客(英文):http://research.baidu.com/bringing-hpc-techniques-deep-learning/

卡巴斯基发布操作系统 Kaspersky OS

百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

与 Linus、Windows,Mac OS 等优先系统兼容性和通用性的考虑不同,Kaspersky OS 的设计目的有且只有一个:最大化安全。因此 Kaspersky OS 采用了 Flux 高级安全内核架构(FLASK)。卡巴斯基不但表示 Kaspersky OS 要做世界上最安全的操作系统,还宣称, Kaspersky OS 的密钥只有量子计算机级别的计算能力才能破解。

雷锋网获知,该系统面向的并非消费者终端(PC),而是网络设备、工业控制系统和物联网设备。它同时兼容 X86 和 ARM 两大架构平台。值得注意的是,卡巴斯基声称该系统和 Linux 没有任何关系,从头到尾完全自行设计,并因此耗费了巨大人力——公司 CEO Eugene Kaspersky 表示,该系统秘密研制已有 14 年。

谷歌发布全新 TensorFlow 库“tf.Transform”

谷歌表示,tf.Transform 将改善 TensorFlow 的数据预处理和格式转化难题。

以下是谷歌对tf.Transform 的技术介绍:

“今天我们正式发布 tf.Transform,一个基于 TensorFlow 的全新功能组件,它允许用户在大规模数据处理框架中定义预处理流水线(preprocessing pipelines),同时还可以将这些流水线导出,将其作为 TensorFlow 计算图(TensorFlow graph)的一部分。


用户可以通过组合 Python 函数来定义该流水线,然后在 Apache Beam 框架下通过 tf.Transform 执行。(注:Apache Beam 是一个用于大规模的、高效的、分布式的数据处理的开源框架)目前,基于 Apache Beam 框架的流水线可以在 Google Cloud Dataflow 平台上运行,并计划在未来支持更多的平台(可能包括 Apache Apex,Apache Flink 和 Apache Spark 等)。值得一提的是,通过 tf.Transform 导出的 TensorFlow 计算图还可以在模型预测阶段将这种数据预处理步骤复用(例如,通过 Tensorflow Serving 提供模型时)。”

GitHub:https://github.com/tensorflow/transform

谷歌博客:http://research.googleblog.com/2017/02/preprocessing-for-machine-learning-with.html

法国研究人员实现用深度学习预测衰老长相

百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

众所周知,此前的深度学习技术虽然能将输入的年轻人脸图像,输出为老年图像,但在这过程中会失去一些面部特征与识别信息,其结果并不准确——严格来说,输出的图像不能说是对同一个人衰老长相的预测。

但现在,法国的一组研究人员成功实现了用深度学习算法,将同一个人的面部照片做“衰老”或“年轻化”处理。换句话说,既能预测老年相貌,也能重现年轻时的面容。上图是研究结果示范。

该研究发表于 ArXiv,题目为“Face Aging With Conditional Generative Adversarial Networks”。

“老得不敢拍照片”或许将退出历史舞台。美图对此怎么看?

ArXiv:https://arxiv.org/abs/1702.01983

AMD 八核十六线程 Ryzen“锐龙”CPU 全球同步预售

百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

AMD 于昨晚 AMD Ryzen Tech Day 正式发布 Ryzen。这来得有些突然——此前媒体与行业人士普遍估计 Ryzen 将在 MWC 发布。不过,Ryzen 发货时间仍然是 3 月 3 日(国行),目前预售开启。

我们来看看预售的三款 7 系 Ryzen 的国行售价:

  • Ryzen 7 1800X 3999 元

  • Ryzen 7 1700X 3099 元

  • Ryzen 7 1700 2499 元

不同电商平台上有 200~300 元不等的预订优惠,感兴趣的可关注。

雷锋网(公众号:雷锋网)提醒:由于事出突然,全世界范围内 Ryzen 的评测还没有放出。目前我们对于它的所有了解,完全基于 AMD 官方宣传信息,以及此前泄露的工程版本芯片跑分。因此,对于这三款芯片之间的性能差距到底有多大、是否值得这中间的差价,尚无定论。业内对“X ”版本性能强在哪里、与非 X 版本的超频潜力差别也尚有疑虑。仅给正在选择的买主做个提醒。

顺便说一句,苏妈给出的官方 Cinebench R15 nt 跑分是:

Ryzen 7 1700:1410 ;

Ryzen 7 1700X:1537;

Ryzen 7 1800X:1601 

根据得分,大家最关心的 1700X 比 1700 有约 9% 的性能提升。与之对比的英特尔跑分:

酷睿 i7 7700k:967;

酷睿 i7 6800k:1108

酷睿 i7 6900k:1474 

史上最强凌动 英特尔发布 Atom C3000

百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

这是凌动产品线首个 16 核 CPU,它整合了多项多见于服务器芯片中的技术:比如 RAS 功能,该功能可即时修正数据错误,并防止网络和存储设备崩溃。 与现有凌动产品线面向移动设备的定位不同,Atom C3000 的服务对象将是存储阵列、网络设备和物联网设备。将为它们带来更强大的数据处理能力。

简而言之,这是款与消费者无关、但关乎网络设备开发商的凌动。 





本文作者:三川
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
14天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
51 3
|
15天前
|
存储 人工智能 运维
|
12天前
|
机器学习/深度学习
深度学习中的正则化技术:防止过拟合的利器
【10月更文挑战第30天】本文将深入探讨深度学习中一个关键概念——正则化,它如同园艺师精心修剪枝叶,确保模型不至于在训练数据的细节中迷失方向。我们将从直观的角度理解正则化的重要性,并逐步介绍几种主流的正则化技术,包括L1和L2正则化、Dropout以及数据增强。每种技术都将通过实际代码示例来展示其应用,旨在为读者提供一套完整的工具箱,以应对深度学习中的过拟合问题。
|
12天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的地面垃圾识别分类技术
AI垃圾分类系统结合深度学习和计算机视觉技术,实现高效、精准的垃圾识别与自动分类。系统集成高精度图像识别、多模态数据分析和实时处理技术,适用于市政环卫、垃圾处理厂和智能回收设备,显著提升管理效率,降低人工成本。
基于深度学习的地面垃圾识别分类技术
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
33 7
|
5天前
|
机器学习/深度学习 算法 自动驾驶
深度学习中的图像识别技术
【10月更文挑战第37天】本文将深入探讨深度学习在图像识别领域的应用,通过解析神经网络模型的构建、训练和优化过程,揭示深度学习如何赋能计算机视觉。文章还将展示代码示例,帮助读者理解并实现自己的图像识别项目。
|
6天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的图像识别技术及其应用
【10月更文挑战第36天】在当今科技飞速发展的时代,深度学习已成为人工智能领域的一颗璀璨明珠。本文将深入探讨深度学习在图像识别方面的技术原理和应用实例,旨在为读者提供一个全面而深入的了解。我们将从基础理论出发,逐步揭示深度学习如何革新了我们对图像数据的处理和理解方式。
|
11天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
32 7
|
8天前
|
机器学习/深度学习 算法 TensorFlow
深度学习中的图像识别技术
【10月更文挑战第34天】本文将探讨深度学习在图像识别领域的应用,并介绍如何利用Python和TensorFlow库实现一个简单的图像分类模型。我们将从基本原理出发,逐步讲解数据准备、模型构建、训练过程以及结果评估等关键步骤。通过本文的学习,读者可以了解到深度学习在图像识别中的强大能力,并掌握如何使用现代工具和技术来解决实际问题。
19 2
|
14天前
|
机器学习/深度学习 编解码 算法
什么是超分辨率?浅谈一下基于深度学习的图像超分辨率技术
超分辨率技术旨在提升图像或视频的清晰度,通过增加单位长度内的采样点数量来提高空间分辨率。基于深度学习的方法,如SRCNN、VDSR、SRResNet等,通过卷积神经网络和残差学习等技术,显著提升了图像重建的质量。此外,基于参考图像的超分辨率技术通过利用高分辨率参考图像,进一步提高了重建图像的真实感和细节。