百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

简介:

百度将 Ring Allreduce 算法引入深度学习

Ring Allreduce 本是 HPC (高性能计算)领域的一项技术。日前,百度硅谷 AI 实验室已成功将其移植到深度学习平台,借此来加速 GPU 之间的数据传输速率。目前,在 GPU 并行计算中,它们之间的通信瓶颈是制约深度学习模型训练速度的主要障碍之一。百度宣布,Ring Allreduce 算法的引入将移除该瓶颈,大幅提升多 GPU 和分布式计算环境下的深度学习模型运算效率。雷锋网获得消息,该技术已被百度成功应用于语音识别。

该算法以库和 Tensorflow 补丁的形式向开发者开源,分别为 baidu-allreduce 和 tensorflow-allreduce,已在 GitHub 上线。

 GitHub:https://github.com/baidu-research/baidu-allreduce

https://github.com/baidu-research/tensorflow-allreduce

详情:http://www.leiphone.com/news/201702/QaSmvdQNbiY4CxBy.html

百度博客(英文):http://research.baidu.com/bringing-hpc-techniques-deep-learning/

卡巴斯基发布操作系统 Kaspersky OS

百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

与 Linus、Windows,Mac OS 等优先系统兼容性和通用性的考虑不同,Kaspersky OS 的设计目的有且只有一个:最大化安全。因此 Kaspersky OS 采用了 Flux 高级安全内核架构(FLASK)。卡巴斯基不但表示 Kaspersky OS 要做世界上最安全的操作系统,还宣称, Kaspersky OS 的密钥只有量子计算机级别的计算能力才能破解。

雷锋网获知,该系统面向的并非消费者终端(PC),而是网络设备、工业控制系统和物联网设备。它同时兼容 X86 和 ARM 两大架构平台。值得注意的是,卡巴斯基声称该系统和 Linux 没有任何关系,从头到尾完全自行设计,并因此耗费了巨大人力——公司 CEO Eugene Kaspersky 表示,该系统秘密研制已有 14 年。

谷歌发布全新 TensorFlow 库“tf.Transform”

谷歌表示,tf.Transform 将改善 TensorFlow 的数据预处理和格式转化难题。

以下是谷歌对tf.Transform 的技术介绍:

“今天我们正式发布 tf.Transform,一个基于 TensorFlow 的全新功能组件,它允许用户在大规模数据处理框架中定义预处理流水线(preprocessing pipelines),同时还可以将这些流水线导出,将其作为 TensorFlow 计算图(TensorFlow graph)的一部分。


用户可以通过组合 Python 函数来定义该流水线,然后在 Apache Beam 框架下通过 tf.Transform 执行。(注:Apache Beam 是一个用于大规模的、高效的、分布式的数据处理的开源框架)目前,基于 Apache Beam 框架的流水线可以在 Google Cloud Dataflow 平台上运行,并计划在未来支持更多的平台(可能包括 Apache Apex,Apache Flink 和 Apache Spark 等)。值得一提的是,通过 tf.Transform 导出的 TensorFlow 计算图还可以在模型预测阶段将这种数据预处理步骤复用(例如,通过 Tensorflow Serving 提供模型时)。”

GitHub:https://github.com/tensorflow/transform

谷歌博客:http://research.googleblog.com/2017/02/preprocessing-for-machine-learning-with.html

法国研究人员实现用深度学习预测衰老长相

百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

众所周知,此前的深度学习技术虽然能将输入的年轻人脸图像,输出为老年图像,但在这过程中会失去一些面部特征与识别信息,其结果并不准确——严格来说,输出的图像不能说是对同一个人衰老长相的预测。

但现在,法国的一组研究人员成功实现了用深度学习算法,将同一个人的面部照片做“衰老”或“年轻化”处理。换句话说,既能预测老年相貌,也能重现年轻时的面容。上图是研究结果示范。

该研究发表于 ArXiv,题目为“Face Aging With Conditional Generative Adversarial Networks”。

“老得不敢拍照片”或许将退出历史舞台。美图对此怎么看?

ArXiv:https://arxiv.org/abs/1702.01983

AMD 八核十六线程 Ryzen“锐龙”CPU 全球同步预售

百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

AMD 于昨晚 AMD Ryzen Tech Day 正式发布 Ryzen。这来得有些突然——此前媒体与行业人士普遍估计 Ryzen 将在 MWC 发布。不过,Ryzen 发货时间仍然是 3 月 3 日(国行),目前预售开启。

我们来看看预售的三款 7 系 Ryzen 的国行售价:

  • Ryzen 7 1800X 3999 元

  • Ryzen 7 1700X 3099 元

  • Ryzen 7 1700 2499 元

不同电商平台上有 200~300 元不等的预订优惠,感兴趣的可关注。

雷锋网(公众号:雷锋网)提醒:由于事出突然,全世界范围内 Ryzen 的评测还没有放出。目前我们对于它的所有了解,完全基于 AMD 官方宣传信息,以及此前泄露的工程版本芯片跑分。因此,对于这三款芯片之间的性能差距到底有多大、是否值得这中间的差价,尚无定论。业内对“X ”版本性能强在哪里、与非 X 版本的超频潜力差别也尚有疑虑。仅给正在选择的买主做个提醒。

顺便说一句,苏妈给出的官方 Cinebench R15 nt 跑分是:

Ryzen 7 1700:1410 ;

Ryzen 7 1700X:1537;

Ryzen 7 1800X:1601 

根据得分,大家最关心的 1700X 比 1700 有约 9% 的性能提升。与之对比的英特尔跑分:

酷睿 i7 7700k:967;

酷睿 i7 6800k:1108

酷睿 i7 6900k:1474 

史上最强凌动 英特尔发布 Atom C3000

百度将 HPC 技术引入深度学习;卡巴斯基操作系统;AMD Ryzen 预售等 | AI 开发者头条

这是凌动产品线首个 16 核 CPU,它整合了多项多见于服务器芯片中的技术:比如 RAS 功能,该功能可即时修正数据错误,并防止网络和存储设备崩溃。 与现有凌动产品线面向移动设备的定位不同,Atom C3000 的服务对象将是存储阵列、网络设备和物联网设备。将为它们带来更强大的数据处理能力。

简而言之,这是款与消费者无关、但关乎网络设备开发商的凌动。 





本文作者:三川
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
3天前
|
Android开发 Swift iOS开发
iOS和安卓作为主流操作系统,开发者需了解两者差异以提高效率并确保优质用户体验。
【10月更文挑战第1天】随着移动互联网的发展,智能手机成为生活必需品,iOS和安卓作为主流操作系统,各有庞大的用户群。开发者需了解两者差异以提高效率并确保优质用户体验。iOS使用Swift或Objective-C开发,强调简洁直观的设计;安卓则采用Java或Kotlin,注重层次与动画。Swift和Kotlin均有现代编程特性。此外,iOS设备更易优化,而安卓需考虑更多兼容性问题。iOS应用仅能通过App Store发布,审核严格;安卓除Google Play外还可通过第三方市场发布,审核较宽松。开发者应根据需求选择合适平台,提供最佳应用体验。
21 3
|
15天前
|
前端开发 开发工具 Android开发
移动应用与系统开发:探索移动操作系统的演变及其对开发者的影响
本文将深入探讨移动操作系统的历史演变,分析其对移动应用开发的影响。我们将从早期的移动操作系统讲起,逐步解析现代移动操作系统的特点,以及这些变化如何塑造了移动应用的开发流程和策略。通过对比不同的移动平台,本文旨在为开发者提供宝贵的见解和建议。
36 8
|
2月前
|
人工智能 边缘计算 运维
AI 时代下,操作系统的进化与重构
随着人工智能(AI)的迅猛发展,操作系统面临着前所未有的挑战和机遇。在这个新时代,操作系统需要进行深刻的进化与重构,以适应AI技术的广泛应用和不断变化的需求。
66 5
|
3天前
|
人工智能 运维 监控
AI 时代下,操作系统如何进化与重构?
【10月更文挑战第1天】2024龙蜥操作系统大会由多家机构指导,龙蜥社区主办,聚焦AI时代下的操作系统进化与重构、生态合作及技术创新。大会汇聚政产学研力量,旨在推动智能计算未来,打造坚实的开源新基建。欲了解更多,
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的未来:深度学习与自然语言处理的融合
【9月更文挑战第22天】本文旨在探讨AI技术中深度学习与自然语言处理的结合,以及它们如何共同推动未来技术的发展。我们将通过实例和代码示例,深入理解这两种技术如何相互作用,以及它们如何影响我们的生活和工作。
40 4
|
25天前
|
人工智能 运维 Cloud Native
专访阿里云:AI 时代服务器操作系统洗牌在即,生态合作重构未来
AI智算时代,服务器操作系统面临的挑战与机遇有哪些?
专访阿里云:AI 时代服务器操作系统洗牌在即,生态合作重构未来
|
25天前
|
人工智能 运维 安全
专访浪潮信息:AI 原生时代,浪潮信息引领服务器操作系统创新 全面贡献龙蜥社区
分享了关于 AI 原生化趋势下服务器操作系统进化的思考,以及浪潮信息在龙蜥社区开源贡献的思路、成果与未来技术发展规划。
专访浪潮信息:AI 原生时代,浪潮信息引领服务器操作系统创新 全面贡献龙蜥社区
|
1月前
|
机器学习/深度学习 人工智能 算法
操作系统的未来:从多任务到深度学习的演变之路
本文将探讨操作系统如何从处理简单多任务发展到支持复杂的深度学习任务。我们将分析现代操作系统面临的新挑战,以及它们如何适应人工智能和大数据时代的要求。文章不仅回顾过去,也展望未来,思考操作系统在技术演进中的角色和方向。
42 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:深度学习与神经网络
【9月更文挑战第11天】本文将深入探讨人工智能的核心领域——深度学习,以及其背后的神经网络技术。我们将从基础理论出发,逐步深入到实践应用,揭示这一领域的神秘面纱。无论你是AI领域的初学者,还是有一定基础的开发者,都能在这篇文章中获得新的启示和理解。让我们一起踏上这场探索之旅,揭开AI的神秘面纱,体验深度学习的魅力。
|
1月前
|
机器学习/深度学习 存储 人工智能
基于深度学习的认知架构的AI
基于深度学习的认知架构的AI是一类模仿人类认知过程的人工智能系统,旨在模拟人类感知、学习、推理、决策等复杂的认知功能。认知架构的目的是创建一个能够理解和处理复杂环境、实现自我学习和适应的AI系统
48 3

热门文章

最新文章