iOS中线程Call Stack的捕获和解析(一)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介:

http://blog.csdn.net/jasonblog/article/details/49909209这里对上个月做的一个技术项目做部分技术小结,这篇文章描述的功能和我们在使用Xcode进行调试时点击暂停的效果类似。

一、获取任意一个线程的Call Stack

如果要获取当前线程的调用栈,可以直接使用现有API:[NSThread callStackSymbols]

但是并没有相关API支持获取任意线程的调用栈,所以只能自己编码实现。

1. 基础结构

一个线程的调用栈是什么样的呢?

我的理解是应该包含当前线程的执行地址,并且从这个地址可以一级一级回溯到线程的入口地址,这样就反向构成了一条链:线程入口执行某个方法,然后逐级嵌套调用到当前现场。

Call_stack_layout_svg(图片来源于维基百科)

如图所示,每一级的方法调用,都对应了一张活动记录,也称为活动帧。也就是说,调用栈是由一张张帧结构组成的,可以称之为栈帧。

我们可以看到,一张栈帧结构中包含着Return Address,也就是当前活动记录执行结束后要返回的地址(展开)。

那么,在我们获取到栈帧后,就可以通过返回地址来进行回溯了。

2. 指令指针和基址指针

我们明确了两个目标:(1)当前执行的指令,(2)当前栈帧结构。

以x86为例,寄存器用途如下:

SP/ESP/RSP: Stack pointer for top address of the stack.
BP/EBP/RBP: Stack base pointer for holding the address of the current stack frame.
IP/EIP/RIP: Instruction pointer. Holds the program counter, the current instruction address.

可以看到,我们可以通过指令指针来获取当前指令地址,以及通过栈基址指针获取当前栈帧地址。

那么问题来了,我们怎么获取到相关寄存器呢?

3. 线程执行状态

考虑到一个线程被挂起时,后续继续执行需要恢复现场,所以在挂起时相关现场需要被保存起来,比如当前执行到哪条指令了。

那么就要有相关的结构体来为线程保存运行时的状态,经过一番查阅,得到如下信息:

The function thread_get_state returns the execution state (e.g. the machine registers) of target_thread as specified by flavor.

Function - Return the execution state for a thread.

SYNOPSIS

kern_return_t   thread_get_state
                (thread_act_t                     target_thread,
                 thread_state_flavor_t                   flavor,
                 thread_state_t                       old_state,
                 mach_msg_type_number_t         old_state_count);
/*
 * THREAD_STATE_FLAVOR_LIST 0
 *  these are the supported flavors
 */
#define x86_THREAD_STATE32      1
#define x86_FLOAT_STATE32       2
#define x86_EXCEPTION_STATE32       3
#define x86_THREAD_STATE64      4
#define x86_FLOAT_STATE64       5
#define x86_EXCEPTION_STATE64       6
#define x86_THREAD_STATE        7
#define x86_FLOAT_STATE         8
#define x86_EXCEPTION_STATE     9
#define x86_DEBUG_STATE32       10
#define x86_DEBUG_STATE64       11
#define x86_DEBUG_STATE         12
#define THREAD_STATE_NONE       13
/* 14 and 15 are used for the internal x86_SAVED_STATE flavours */
#define x86_AVX_STATE32         16
#define x86_AVX_STATE64         17
#define x86_AVX_STATE           18

所以我们可以通过这个API搭配相关参数来获得想要的寄存器信息:

bool jdy_fillThreadStateIntoMachineContext(thread_t thread, _STRUCT_MCONTEXT *machineContext) {
    mach_msg_type_number_t state_count = x86_THREAD_STATE64_COUNT;
    kern_return_t kr = thread_get_state(thread, x86_THREAD_STATE64, (thread_state_t)&machineContext->__ss, &state_count);
    return (kr == KERN_SUCCESS);
}

这里引入了一个结构体叫_STRUCT_MCONTEXT

4. 不同平台的寄存器

_STRUCT_MCONTEXT在不同平台上的结构不同:

x86_64,如iPhone 6模拟器:

_STRUCT_MCONTEXT64
{
    _STRUCT_X86_EXCEPTION_STATE64   __es;
    _STRUCT_X86_THREAD_STATE64  __ss;
    _STRUCT_X86_FLOAT_STATE64   __fs;
};

_STRUCT_X86_THREAD_STATE64
{
    __uint64_t  __rax;
    __uint64_t  __rbx;
    __uint64_t  __rcx;
    __uint64_t  __rdx;
    __uint64_t  __rdi;
    __uint64_t  __rsi;
    __uint64_t  __rbp;
    __uint64_t  __rsp;
    __uint64_t  __r8;
    __uint64_t  __r9;
    __uint64_t  __r10;
    __uint64_t  __r11;
    __uint64_t  __r12;
    __uint64_t  __r13;
    __uint64_t  __r14;
    __uint64_t  __r15;
    __uint64_t  __rip;
    __uint64_t  __rflags;
    __uint64_t  __cs;
    __uint64_t  __fs;
    __uint64_t  __gs;
};

x86_32,如iPhone 4s模拟器:

_STRUCT_MCONTEXT32
{
    _STRUCT_X86_EXCEPTION_STATE32   __es;
    _STRUCT_X86_THREAD_STATE32  __ss;
    _STRUCT_X86_FLOAT_STATE32   __fs;
};

_STRUCT_X86_THREAD_STATE32
{
    unsigned int    __eax;
    unsigned int    __ebx;
    unsigned int    __ecx;
    unsigned int    __edx;
    unsigned int    __edi;
    unsigned int    __esi;
    unsigned int    __ebp;
    unsigned int    __esp;
    unsigned int    __ss;
    unsigned int    __eflags;
    unsigned int    __eip;
    unsigned int    __cs;
    unsigned int    __ds;
    unsigned int    __es;
    unsigned int    __fs;
    unsigned int    __gs;
};

ARM64,如iPhone 5s:

_STRUCT_MCONTEXT64
{
    _STRUCT_ARM_EXCEPTION_STATE64   __es;
    _STRUCT_ARM_THREAD_STATE64  __ss;
    _STRUCT_ARM_NEON_STATE64    __ns;
};

_STRUCT_ARM_THREAD_STATE64
{
    __uint64_t    __x[29];  /* General purpose registers x0-x28 */
    __uint64_t    __fp;     /* Frame pointer x29 */
    __uint64_t    __lr;     /* Link register x30 */
    __uint64_t    __sp;     /* Stack pointer x31 */
    __uint64_t    __pc;     /* Program counter */
    __uint32_t    __cpsr;   /* Current program status register */
    __uint32_t    __pad;    /* Same size for 32-bit or 64-bit clients */
};

ARMv7/v6,如iPhone 4s:

_STRUCT_MCONTEXT32
{
    _STRUCT_ARM_EXCEPTION_STATE __es;
    _STRUCT_ARM_THREAD_STATE    __ss;
    _STRUCT_ARM_VFP_STATE       __fs;
};

_STRUCT_ARM_THREAD_STATE
{
    __uint32_t  __r[13];    /* General purpose register r0-r12 */
    __uint32_t  __sp;       /* Stack pointer r13 */
    __uint32_t  __lr;       /* Link register r14 */
    __uint32_t  __pc;       /* Program counter r15 */
    __uint32_t  __cpsr;     /* Current program status register */
};

可以对照《iOS ABI Function Call Guide》,其中在ARM64相关章节中描述到:

The frame pointer register (x29) must always address a valid frame record, although some functions–such as leaf functions or tail calls–may elect not to create an entry in this list. As a result, stack traces will always be meaningful, even without debug information

而在ARMv7/v6上描述到:

The function calling conventions used in the ARMv6 environment are the same as those used in the Procedure Call Standard for the ARM Architecture (release 1.07), with the following exceptions:

*The stack is 4-byte aligned at the point of function calls.
Large data types (larger than 4 bytes) are 4-byte aligned.
Register R7 is used as a frame pointer
Register R9 has special usage.*

所以,通过了解以上不同平台的寄存器结构,我们可以编写出比较通用的回溯功能。

5. 算法实现

/**
 * 关于栈帧的布局可以参考:
 * https://en.wikipedia.org/wiki/Call_stack
 * http://www.cs.cornell.edu/courses/cs412/2008sp/lectures/lec20.pdf
 * http://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64/
 */
typedef struct JDYStackFrame {
    const struct JDYStackFrame* const previous;
    const uintptr_t returnAddress;
} JDYStackFrame;

//

int jdy_backtraceThread(thread_t thread, uintptr_t *backtraceBuffer, int limit) {
    if (limit <= 0) return 0;

    _STRUCT_MCONTEXT mcontext;
    if (!jdy_fillThreadStateIntoMachineContext(thread, &mcontext)) {
        return 0;
    }

    int i = 0;
    uintptr_t pc = jdy_programCounterOfMachineContext(&mcontext);
    backtraceBuffer[i++] = pc;
    if (i == limit) return i;

    uintptr_t lr = jdy_linkRegisterOfMachineContext(&mcontext);
    if (lr != 0) {
        /* 由于lr保存的也是返回地址,所以在lr有效时,应该会产生重复的地址项 */
        backtraceBuffer[i++] = lr;
        if (i == limit) return i;
    }

    JDYStackFrame frame = {0};
    uintptr_t fp = jdy_framePointerOfMachineContext(&mcontext);
    if (fp == 0 || jdy_copyMemory((void *)fp, &frame, sizeof(frame)) != KERN_SUCCESS) {
        return i;
    }

    while (i < limit) {
        backtraceBuffer[i++] = frame.returnAddress;
        if (frame.returnAddress == 0
            || frame.previous == NULL
            || jdy_copyMemory((void *)frame.previous, &frame, sizeof(frame)) != KERN_SUCCESS) {
            break;
        }
    }

    return i;
}

如上。

二、编码实现对一个地址进行符号化解析

后续iOS中线程Call Stack的捕获和解析(二)

目录
相关文章
|
1月前
|
并行计算 Java 数据处理
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
160 0
|
19天前
|
安全 程序员 API
|
15天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
26天前
|
安全 Java
Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧
【10月更文挑战第20天】Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧,包括避免在循环外调用wait()、优先使用notifyAll()、确保线程安全及处理InterruptedException等,帮助读者更好地掌握这些方法的应用。
17 1
|
1月前
|
监控 Java
在实际应用中选择线程异常捕获方法的考量
【10月更文挑战第15天】选择最适合的线程异常捕获方法需要综合考虑多种因素。没有一种方法是绝对最优的,需要根据具体情况进行权衡和选择。在实际应用中,还需要不断地实践和总结经验,以提高异常处理的效果和程序的稳定性。
19 3
|
1月前
|
监控 Java
捕获线程执行异常的多种方法
【10月更文挑战第15天】捕获线程执行异常的方法多种多样,每种方法都有其特点和适用场景。在实际开发中,需要根据具体情况选择合适的方法或结合多种方法来实现全面有效的线程异常捕获。这有助于提高程序的健壮性和稳定性,减少因线程异常带来的潜在风险。
21 1
|
1月前
|
监控 API
Hook 线程与捕获线程执行异常
【10月更文挑战第11天】Hook 线程和捕获线程执行异常是多线程编程中不可或缺的技术。通过深入理解和掌握这些方法,我们可以提高程序的稳定性和可靠性,更好地应对各种异常情况。同时,在实际应用中要注意平衡性能和准确性,制定合理的异常处理策略,以确保程序的正常运行。
29 1
|
1月前
|
开发工具 Android开发 iOS开发
深入解析安卓与iOS开发环境的优劣
【10月更文挑战第4天】 本文将深入探讨安卓和iOS两大主流移动操作系统的开发环境,从技术架构、开发工具、用户体验等方面进行详细比较。通过分析各自的优势和不足,帮助开发者更好地理解这两个平台的异同,从而为项目选择最合适的开发平台提供参考。
24 3
|
21天前
|
安全 5G Android开发
安卓与iOS的较量:技术深度解析
【10月更文挑战第24天】 在移动操作系统领域,安卓和iOS无疑是两大巨头。本文将深入探讨这两个系统的技术特点、优势和不足,以及它们在未来可能的发展方向。我们将通过对比分析,帮助读者更好地理解这两个系统的本质和内涵,从而引发对移动操作系统未来发展的深思。
38 0
|
1月前
|
安全 Android开发 iOS开发
深入解析:安卓与iOS的系统架构及其对应用开发的影响
本文旨在探讨安卓与iOS两大主流操作系统的架构差异,并分析这些差异如何影响应用开发的策略和实践。通过对比两者的设计哲学、安全机制、开发环境及性能优化等方面,本文揭示了各自的特点和优势,为开发者在选择平台和制定开发计划时提供参考依据。
52 4

推荐镜像

更多