提高 Java 代码性能的各种技巧

简介:

Java 6,7,8 中的 String.intern – 字符串池

这篇文章将要讨论 Java 6 中是如何实现 String.intern 方法的,以及这个方法在 java 7 以及 Java 8 中做了哪些调整。

字符串池

字符串池(有名字符串标准化)是通过使用唯一的共享 String 对象来使用相同的值不同的地址表示字符串的过程。你可以使用自己定义的 Map<String, String> (根据需要使用 weak 引用或者 soft 引用)并使用 map 中的值作为标准值来实现这个目标,或者你也可以使用 JDK 提供的 String.intern()

很多标准禁止在 Java 6 中使用 String.intern() 因为如果频繁使用池会市区控制,有很大的几率触发 OutOfMemoryExceptionOracle Java 7 对字符串池做了很多改进。

Java 6 中的 String.intern()

在美好的过去所有共享的 String 对象都存储在 PermGen 中 — 堆中固定大小的部分主要用于存储加载的类对象和字符串池。除了明确的共享字符串,PermGen 字符串池还包含所有程序中使用过的字符串(这里要注意是使用过的字符串,如果类或者方法从未加载或者被条用,在其中定义的任何常量都不会被加载)

Java 6 中字符串池的最大问题是它的位置 — PermGen。PermGen 的大小是固定的并且在运行时是无法扩展的。你可以使用 -XX:MaxPermSize=N 配置来调整它的大小。据我了解,对于不同的平台默认的 PermGen 大小在 32M 到 96M 之间。你可以扩展它的大小,不过大小使用都是固定的。这个限制需要你在使用 String.intern 时需要非常小心 — 你最好不要使用这个方法 intern 任何无法控制的用户输入。这是为什么在 JAVA6 中大部分使用手动管理 Map 来实现字符串池

如果你想学习Java可以来这个群,首先是二二零,中间是一四二,最后是九零六,里面可以学习交流,也有资料可以下载。

Java 7 中的 String.intern()

Java 7 中 oracle 的工程师对字符串池的逻辑做了很大的改变 — 字符串池的位置被调整到 heap 中了。这意味着你再也不会被固定的内存空间限制了。所有的字符串都保存在堆(heap)中同其他普通对象一样,这使得你在调优应用时仅需要调整堆大小。这 个改动使得我们有足够的理由让我们重新考虑在 Java 7 中使用 String.intern()。

字符串池中的数据会被垃圾收集

没错,在 JVM 字符串池中的所有字符串会被垃圾收集,如果这些值在应用中没有任何引用。这是用于所有版本的 Java,这意味着如果 interned 的字符串在作用域外并且没有任何引用 — 它将会从 JVM 的字符串池中被垃圾收集掉。

因为被重新定位到堆中以及会被垃圾收集,JVM 的字符串池看上去是存放字符串的合适位置,是吗?理论上是 — 违背使用的字符串会从池中收集掉,当外部输入一个字符传且池中存在时可以节省内存。看起来是一个完美的节省内存的策略?在你回答这个之前,可以肯定的是你 需要知道字符串池是如何实现的。

在 Java 6,7,8 中 JVM 字符串池的实现

字符串池是使用一个拥有固定容量的 HashMap 每个元素包含具有相同 hash 值的字符串列表。

默认的池大小是 1009 (出现在上面提及的 bug 报告的源码中,在 Java7u40 中增加了)。在 JAVA 6 早期版本中是一个常量,在随后的 java6u30 至 java6u41 中调整为可配置的。而在java 7中一开始就是可以配置的(至少在java7u02中是可以配置的)。你需要指定参数 -XX:StringTableSize=N,  N 是字符串池 Map 的大小。确保它是为性能调优而预先准备的大小。

在 Java 6 中这个参数没有太多帮助,因为你仍任被限制在固定的 PermGen 内存大小中。后续的讨论将直接忽略 Java 6

Java 7 (直至 Java7u40)

在 Java7 中,换句话说,你被限制在一个更大的堆内存中。这意味着你可以预先设置好 String 池的大小(这个值取决于你的应用程序需求)。通常说来,一旦程序开始内存消耗,内存都是成百兆的增长,在这种情况下,给一个拥有 100 万字符串对象的字符串池分配 8-16M 的内存看起来是比较适合的(不要使用1,000,000 作为 -XX:StringTaleSize 的值 – 它不是质数;使用 1,000,003代替)

你可能期待关于 String 在 Map 中的分配 — 可以阅读我之前关于 HashCode 方法调优的经验。

你必须设置一个更大的 -XX:StringTalbeSize 值(相比较默认的 1009 ),如果你希望更多的使用 String.intern() — 否则这个方法将很快递减到 0 (池大小)。

我没有注意到在 intern 小于 100 字符的字符串时的依赖情况(我认为在一个包含 50 个重复字符的字符串与现实数据并不相似,因此 100 个字符看上去是一个很好的测试限制)

下面是默认池大小的应用程序日志:第一列是已经 intern 的字符串数量,第二列 intern 10,000 个字符串所有的时间(秒)

0; time = 0.0 sec
50000; time = 0.03 sec
100000; time = 0.073 sec
150000; time = 0.13 sec
200000; time = 0.196 sec
250000; time = 0.279 sec
300000; time = 0.376 sec
350000; time = 0.471 sec
400000; time = 0.574 sec
450000; time = 0.666 sec
500000; time = 0.755 sec
550000; time = 0.854 sec
600000; time = 0.916 sec
650000; time = 1.006 sec
700000; time = 1.095 sec
750000; time = 1.273 sec
800000; time = 1.248 sec
850000; time = 1.446 sec
900000; time = 1.585 sec
950000; time = 1.635 sec
1000000; time = 1.913 sec

测试是在 Core i5-3317U@1.7Ghz CPU 设备上进行的。你可以看到,它成线性增长,并且在 JVM 字符串池包含一百万个字符串时,我仍然可以近似每秒 intern 5000 个字符串,这对于在内存中处理大量数据的应用程序来说太慢了。

现在,调整 -XX:StringTableSize=100003 参数来重新运行测试:

50000; time = 0.017 sec
100000; time = 0.009 sec
150000; time = 0.01 sec
200000; time = 0.009 sec
250000; time = 0.007 sec
300000; time = 0.008 sec
350000; time = 0.009 sec
400000; time = 0.009 sec
450000; time = 0.01 sec
500000; time = 0.013 sec
550000; time = 0.011 sec
600000; time = 0.012 sec
650000; time = 0.015 sec
700000; time = 0.015 sec
750000; time = 0.01 sec
800000; time = 0.01 sec
850000; time = 0.011 sec
900000; time = 0.011 sec
950000; time = 0.012 sec
1000000; time = 0.012 sec

可以看到,这时插入字符串的时间近似于常量(在 Map 的字符串列表中平均字符串个数不超过 10 个),下面是相同设置的结果,不过这次我们将向池中插入 1000 万个字符串(这意味着 Map 中的字符串列表平均包含 100 个字符串)

2000000; time = 0.024 sec
3000000; time = 0.028 sec
4000000; time = 0.053 sec
5000000; time = 0.051 sec
6000000; time = 0.034 sec
7000000; time = 0.041 sec
8000000; time = 0.089 sec
9000000; time = 0.111 sec
10000000; time = 0.123 sec

现在让我们将吃的大小增加到 100 万(精确的说是 1,000,003)

1000000; time = 0.005 sec
2000000; time = 0.005 sec
3000000; time = 0.005 sec
4000000; time = 0.004 sec
5000000; time = 0.004 sec
6000000; time = 0.009 sec
7000000; time = 0.01 sec
8000000; time = 0.009 sec
9000000; time = 0.009 sec
10000000; time = 0.009 sec

如你所看到的,时间非常平均,并且与 “0 到 100万” 的表没有太大差别。甚至在池大小足够大的情况下,我的笔记本也能每秒添加1,000,000个字符对象。

我们还需要手工管理字符串池吗?

现在我们需要对比 JVM 字符串池和 WeakHashMap<String, WeakReference<String>> 它可以用来模拟 JVM 字符串池。下面的方法用来替换 String.intern

private static final WeakHashMap<String, WeakReference<String>> s_manualCache = 
    new WeakHashMap<String, WeakReference<String>>( 100000 );

private static String manualIntern( final String str )
{
    final WeakReference<String> cached = s_manualCache.get( str );
    if ( cached != null )
    {
        final String value = cached.get();
        if ( value != null )
            return value;
    }
    s_manualCache.put( str, new WeakReference<String>( str ) );
    return str;
}

下面针对手工池的相同测试:

0; manual time = 0.001 sec
50000; manual time = 0.03 sec
100000; manual time = 0.034 sec
150000; manual time = 0.008 sec
200000; manual time = 0.019 sec
250000; manual time = 0.011 sec
300000; manual time = 0.011 sec
350000; manual time = 0.008 sec
400000; manual time = 0.027 sec
450000; manual time = 0.008 sec
500000; manual time = 0.009 sec
550000; manual time = 0.008 sec
600000; manual time = 0.008 sec
650000; manual time = 0.008 sec
700000; manual time = 0.008 sec
750000; manual time = 0.011 sec
800000; manual time = 0.007 sec
850000; manual time = 0.008 sec
900000; manual time = 0.008 sec
950000; manual time = 0.008 sec
1000000; manual time = 0.008 sec

当 JVM 有足够内存时,手工编写的池提供了良好的性能。不过不幸的是,我的测试(保留 String.valueOf(0 < N < 1,000,000,000))保留非常短的字符串,在使用 -Xmx1280M 参数时它允许我保留月为 2.5M 的这类字符串。JVM 字符串池 (size=1,000,003)从另一方面讲在 JVM 内存足够时提供了相同的性能特性,知道 JVM 字符串池包含 12.72M 的字符串并消耗掉所有内存(5倍多)。我认为,这非常值得你在你的应用中去掉所有手工字符串池。

在 Java 7u40+ 以及 Java 8 中的 String.intern()

Java7u40 版本扩展了字符串池的大小(这是组要的性能更新)到 60013.这个值允许你在池中包含大约 30000 个独立的字符串。通常来说,这对于需要保存的数据来说已经足够了,你可以通过 -XX:+PrintFlagsFinal JVM 参数获得这个值。

我尝试在原始发布的 Java 8 中运行相同的测试,Java 8 仍然支持 -XX:StringTableSize 参数来兼容 Java 7 特性。主要的区别在于 Java 8 中默认的池大小增加到 60013:

50000; time = 0.019 sec
100000; time = 0.009 sec
150000; time = 0.009 sec
200000; time = 0.009 sec
250000; time = 0.009 sec
300000; time = 0.009 sec
350000; time = 0.011 sec
400000; time = 0.012 sec
450000; time = 0.01 sec
500000; time = 0.013 sec
550000; time = 0.013 sec
600000; time = 0.014 sec
650000; time = 0.018 sec
700000; time = 0.015 sec
750000; time = 0.029 sec
800000; time = 0.018 sec
850000; time = 0.02 sec
900000; time = 0.017 sec
950000; time = 0.018 sec
1000000; time = 0.021 sec

测试代码

这篇文章的测试代码很简单,一个方法中循环创建并保留新字符串。你可以测量它保留 10000 个字符串所需要的时间。最好配合 -verbose:gc JVM 参数来运行这个测试,这样可以查看垃圾收集是何时以及如何发生的。另外最好使用 -Xmx 参数来执行堆的最大值。

这里有两个测试:testStringPoolGarbageCollection 将显示 JVM 字符串池被垃圾收集 — 检查垃圾收集日志消息。在 Java 6 的默认 PermGen 大小配置上,这个测试会失败,因此最好增加这个值,或者更新测试方法,或者使用 Java 7.

第二个测试显示内存中保留了多少字符串。在 Java 6 中执行需要两个不同的内存配置 比如: -Xmx128M 以及 -Xmx1280M (10 倍以上)。你可能发现这个值不会影响放入池中字符串的数量。另一方面,在 Java 7 中你能够在堆中填满你的字符串。

/**
 - Testing String.intern.
 *
 - Run this class at least with -verbose:gc JVM parameter.
 */
public class InternTest {
    public static void main( String[] args ) {
        testStringPoolGarbageCollection();
        testLongLoop();
    }

    /**
     - Use this method to see where interned strings are stored
     - and how many of them can you fit for the given heap size.
     */
    private static void testLongLoop()
    {
        test( 1000 * 1000 * 1000 );
        //uncomment the following line to see the hand-written cache performance
        //testManual( 1000 * 1000 * 1000 );
    }

    /**
     - Use this method to check that not used interned strings are garbage collected.
     */
    private static void testStringPoolGarbageCollection()
    {
        //first method call - use it as a reference
        test( 1000 * 1000 );
        //we are going to clean the cache here.
        System.gc();
        //check the memory consumption and how long does it take to intern strings
        //in the second method call.
        test( 1000 * 1000 );
    }

    private static void test( final int cnt )
    {
        final List<String> lst = new ArrayList<String>( 100 );
        long start = System.currentTimeMillis();
        for ( int i = 0; i < cnt; ++i )
        {
            final String str = "Very long test string, which tells you about something " +
            "very-very important, definitely deserving to be interned #" + i;
//uncomment the following line to test dependency from string length
//            final String str = Integer.toString( i );
            lst.add( str.intern() );
            if ( i % 10000 == 0 )
            {
                System.out.println( i + "; time = " + ( System.currentTimeMillis() - start ) / 1000.0 + " sec" );
                start = System.currentTimeMillis();
            }
        }
        System.out.println( "Total length = " + lst.size() );
    }

    private static final WeakHashMap<String, WeakReference<String>> s_manualCache =
        new WeakHashMap<String, WeakReference<String>>( 100000 );

    private static String manualIntern( final String str )
    {
        final WeakReference<String> cached = s_manualCache.get( str );
        if ( cached != null )
        {
            final String value = cached.get();
            if ( value != null )
                return value;
        }
        s_manualCache.put( str, new WeakReference<String>( str ) );
        return str;
    }

    private static void testManual( final int cnt )
    {
        final List<String> lst = new ArrayList<String>( 100 );
        long start = System.currentTimeMillis();
        for ( int i = 0; i < cnt; ++i )
        {
            final String str = "Very long test string, which tells you about something " +
                "very-very important, definitely deserving to be interned #" + i;
            lst.add( manualIntern( str ) );
            if ( i % 10000 == 0 )
            {
                System.out.println( i + "; manual time = " + ( System.currentTimeMillis() - start ) / 1000.0 + " sec" );
                start = System.currentTimeMillis();
            }
        }
        System.out.println( "Total length = " + lst.size() );
    }
}

总结

  • 由于 Java 6 中使用固定的内存大小(PermGen)因此不要使用 String.intern() 方法
  • Java7 和 8 在堆内存中实现字符串池。这以为这字符串池的内存限制等于应用程序的内存限制。
  • 在 Java 7 和 8 中使用 -XX:StringTableSize 来设置字符串池 Map 的大小。它是固定的,因为它使用 HashMap 实现。近似于你应用单独的字符串个数(你希望保留的)并且设置池的大小为最接近的质数并乘以 2 (减少碰撞的可能性)。它是的 String.intern 可以使用相同(固定)的时间并且在每次插入时消耗更小的内存(同样的任务,使用java WeakHashMap将消耗4-5倍的内存)。
  • 在 Java 6 和 7(Java7u40以前) 中 -XX:StringTableSize 参数的值是 1009。Java7u40 以后这个值调整为 60013 (Java 8 中使用相同的值)
  • 如果你不确定字符串池的用量,参考:-XX:+PrintStringTableStatistics JVM 参数,当你的应用挂掉时它告诉你字符串池的使用量信息。
相关文章
|
14天前
|
缓存 算法 Java
Java 实现的局域网管控软件的性能调优
局域网管控软件在企业网络管理中至关重要,但随着网络规模扩大和功能需求增加,其性能可能受影响。文章分析了数据处理效率低下、网络通信延迟和资源占用过高等性能瓶颈,并提出了使用缓存、优化算法、NIO库及合理管理线程池等调优措施,最终通过性能测试验证了优化效果,显著提升了软件性能。
29 1
|
12天前
|
存储 安全 Java
Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
【10月更文挑战第17天】Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
36 2
|
12天前
|
存储 Java API
键值对魔法:如何优雅地使用Java Map,让代码更简洁?
键值对魔法:如何优雅地使用Java Map,让代码更简洁?
68 2
|
5天前
|
XML 安全 Java
Java反射机制:解锁代码的无限可能
Java 反射(Reflection)是Java 的特征之一,它允许程序在运行时动态地访问和操作类的信息,包括类的属性、方法和构造函数。 反射机制能够使程序具备更大的灵活性和扩展性
17 5
Java反射机制:解锁代码的无限可能
|
1天前
|
jenkins Java 测试技术
如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例详细说明
本文介绍了如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例,详细说明了从 Jenkins 安装配置到自动构建、测试和部署的全流程。文中还提供了一个 Jenkinsfile 示例,并分享了实践经验,强调了版本控制、自动化测试等关键点的重要性。
17 3
|
7天前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
33 10
|
2天前
|
分布式计算 Java MaxCompute
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
|
1天前
|
Java
Java代码解释++i和i++的五个主要区别
本文介绍了前缀递增(++i)和后缀递增(i++)的区别。两者在独立语句中无差异,但在赋值表达式中,i++ 返回原值,++i 返回新值;在复杂表达式中计算顺序不同;在循环中虽结果相同但使用方式有别。最后通过 `Counter` 类模拟了两者的内部实现原理。
Java代码解释++i和i++的五个主要区别
|
5天前
|
Java 数据库连接 数据库
优化之路:Java连接池技术助力数据库性能飞跃
在Java应用开发中,数据库操作常成为性能瓶颈。频繁的数据库连接建立和断开增加了系统开销,导致性能下降。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接,显著减少连接开销,提升系统性能。文章详细介绍了连接池的优势、选择标准、使用方法及优化策略,帮助开发者实现数据库性能的飞跃。
16 4
|
3天前
|
Java 数据库连接 数据库
深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能
在Java应用开发中,数据库操作常成为性能瓶颈。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能。文章介绍了连接池的优势、选择和使用方法,以及优化配置的技巧。
8 1