《数据挖掘:实用案例分析》——第1章 初识数据挖掘 1.1 什么是数据挖掘

简介: 本节书摘来自华章计算机《数据挖掘:实用案例分析》一书中的第1章,第1.1节,作者 张良均 陈俊德 刘名军 陈荣,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

第1章 初识数据挖掘

随着计算机技术、网络技术、通信技术和Internet技术的发展,以及各行各业业务操作流程的自动化,企业内积累了大量业务数据,这些数据动辄以TB计算。这些数据和由此产生的信息是企业的财富,它如实地记录着企业运作的状况。面对大量的数据,迫使人们不断寻找新的工具,来对企业的运营规律进行探索,为商业决策提供有价值的信息,使企业获得利润。能满足企业这一迫切需求的有力工具就是数据挖掘。对于企业而言,数据挖掘有助于发现业务的趋势,揭示已知的事实,预测未知的结果。从这个意义上讲,知识是力量,数据挖掘是财富。

1.1 什么是数据挖掘

数据挖掘(Data Mining,DM):就是从大量数据(包括文本)中挖掘出隐含的、未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程;是利用各种分析工具在海量数据中发现模型和数据之间关系的过程。这些模型和关系可以被企业用来分析风险、进行预测。

数据挖掘的目的就是从数据中“淘金”,就是从数据中获取智能的过程。

Gartner Group提出:“数据挖掘是通过仔细分析大量数据来揭示有意义的新的关系、模式和趋势的过程。它使用模式认知技术、统计技术和数学技术。”

The META Group的Aaron Zornes表示:“数据挖掘是一个从大型数据库中提取以前不知道的可操作性信息的知识挖掘过程。”

总之,由于企业内产生了大量的业务数据,这些数据和由此产生的信息是企业的财富,它如实记录了企业运作的状况。通过数据挖掘分析,能帮助企业发现业务的趋势,揭示已知的事实,预测未知的结果。数据挖掘已成为企业保持竞争力的必要方法。

相关文章
|
3月前
|
自然语言处理 算法 数据挖掘
【数据挖掘】十大算法之PageRank连接分析算法
文章介绍了PageRank算法的基本概念和数学模型,包括如何通过一阶马尔科夫链定义随机游走模型以及如何计算网页的重要性评分,并提供了PageRank迭代算法的具体步骤。
71 0
|
30天前
|
搜索推荐 数据挖掘 UED
分享一些利用商品详情数据挖掘潜在需求的成功案例
本文介绍了四个成功利用商品详情数据挖掘潜在需求的案例:亚马逊通过个性化推荐系统提升销售额;小米通过精准挖掘用户需求优化智能硬件生态链;星巴克推出定制化饮品服务满足用户多样化口味;美妆品牌利用数据改进产品配方和设计,制定针对性营销策略。这些案例展示了数据挖掘在提升用户体验和商业价值方面的巨大潜力。
|
3月前
|
自然语言处理 数据可视化 安全
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,涉及疫情背景下周边游需求图谱分析,包括微信公众号文章分类、周边游产品热度分析、本地旅游图谱构建与分析,以及疫情前后旅游产品需求变化分析的Python实现方法。
119 1
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现
|
3月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
159 0
|
3月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
本文总结了2023年第十一届泰迪杯数据挖掘挑战赛A题的新冠疫情防控数据分析,提供了32页和40页的论文以及实现代码,涉及密接者追踪、疫苗接种影响分析、重点场所管控以及疫情趋势研判等多个方面,运用了机器学习算法和SEIR传染病模型等方法。
62 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
|
3月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛A题的解题思路和Python代码实现,涵盖了新冠疫情防控数据的分析、建模方案以及数据治理的具体工作。
74 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
|
3月前
|
存储 数据可视化 数据挖掘
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题三方案及Python实现
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,专注于问题三“本地旅游图谱构建与分析”,介绍了基于OTA和UGC数据的旅游产品关联分析方法,使用支持度、置信度、提升度来计算关联度得分,并进行了结果可视化,同时指出了方案的改进方向。
67 1
|
3月前
|
存储 自然语言处理 算法
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题二方案及Python实现
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,专注于疫情背景下的周边游需求图谱分析,具体针对问题二“周边游产品热度分析”,介绍了从OTA和UGC数据中提取旅游产品、计算产品热度得分、判断产品类型的方法,并给出了Python实现步骤和代码。
78 1
|
3月前
|
数据采集 自然语言处理 数据可视化
基于python数据挖掘在淘宝评价方面的应用与分析,技术包括kmeans聚类及情感分析、LDA主题分析
本文探讨了基于Python数据挖掘技术在淘宝评价分析中的应用,涵盖了数据采集、清洗、预处理、评论词频分析、情感分析、聚类分析以及LDA主题建模和可视化,旨在揭示淘宝客户评价中的潜在模式和情感倾向,为商家和消费者提供决策支持。
|
3月前
|
SQL 开发框架 大数据
【数据挖掘】顺丰科技2022年秋招大数据挖掘与分析工程师笔试题
顺丰科技2022年秋招大数据挖掘与分析工程师笔试题解析,涵盖了多领域选择题和编程题,包括动态规划、数据库封锁协议、概率论、SQL、排序算法等知识点。
88 0

热门文章

最新文章