广告系统:广告引擎如何做到在 0.1s 内返回广告信息?

简介: 广告系统是互联网核心营收支柱,支撑Google、Facebook等公司超80%收入。其本质是高并发、低延迟的实时检索系统,需在0.1秒内完成百万级广告匹配。本文详解广告引擎架构:通过标签过滤、树形分片优化索引;引入向量检索实现智能匹配;采用非精准打分预筛+深度学习精排的混合排序策略;并在离线索引构建时前置过滤无效广告,压缩检索空间。结合业务特点,从索引、召回到排序全方位提升性能,保障高效精准投放。

说到广告系统,很多人可能没有那么熟悉。但是在互联网行业中,广告系统其实是非常重要,并且非常有代表性的一种系统。

一方面是因为,广告是许多互联网公司的重要营收来源。比如,我们熟悉的 Google 和 Facebook,它们的广告收入就占公司总收入的 80% 以上。因此,尽管许多互联网公司的主营业务并不一样,有的是搜索引擎,有的是电商平台,有的是视频平台等等。但是,它们背后都有着相似的广告业务线。

另一方面,互联网广告对于工程和算法有着强烈的依赖。强大的工程和算法让现在的互联网广告能做到千人千面。最常见的,我们在打开网站的一瞬间,广告系统就会通过实时的分析计算,从百万甚至千万的广告候选集中,为我们这一次的广告请求选出专属的广告。而且,整个响应广告请求的处理过程,只需要 0.1 秒就能完成。

那在大型广告系统中,广告的请求量其实非常大,每秒钟可能有几十万甚至上百万次。因此,广告系统是一个典型的高并发低延迟系统。事实上,这背后离不开一个高性能的广告检索引擎的支持。那今天,我们就来聊一聊,广告系统中负责检索功能的广告引擎架构。

广告引擎的整体架构和工作过程

首先,我们来了解两个基本概念。

互联网广告分为搜索广告和展示广告两大类。简单来说,搜索广告就是用户主动输入关键词以后,搜索引擎在返回结果中展示出的相关广告。而展示广告,则是在搜索引擎之外的网站或 App 中,用户在浏览页面的情况下,被动看到的广告。比如说,在打开一些 App 时出现的开屏广告,以及朋友圈中的广告等等。

尽管这两种广告的业务形态不太一样,但是它们后台的广告引擎本质上都是相似的,主要的区别是约束条件上的不同。

在搜索广告中,因为它和搜索词有很强的相关性,所以,我们需要针对搜索词进行一系列的分析,这和我们上一讲说过的查询分析过程类似,这里我就不多讲了。而展示广告没有搜索词的约束条件,展示能力也就更灵活。因此,今天我们主要以展示广告为例,来说一说从用户打开网站到看到广告,广告系统是如何工作的。

为了方便你理解,我梳理了一张广告引擎的核心功能架构图。接下来,我就依据这个架构图,从 用户浏览 和 广告主投放广告 这两个方面,来为你详讲解一下广告引擎的工作过程。

一方面,当用户浏览网页时,网页会向服务端发起一个广告请求。服务端接到广告请求后,会先进行请求解析,也就是通过用户在系统中的唯一 ID、网站地址以及广告位 ID,去后台查询相关的广告请求的扩展信息。

那怎么查询呢?一般来说,通过系统之前对用户的长期行为收集和分析,我们就能知道该用户的喜好,比如喜欢看篮球、喜欢购物等。根据得到的结果,我们会为用户打上相应的标签。同理,对于各种网页和广告位,我们也会分析好网页分类等信息。然后,我们会提前将这些分析好的结果保存在 Key-value 数据库中,以支持快速查询。这样一来,广告请求解析就可以通过查询 Key-value 数据库,得到相关信息了。

另一方面,广告主在投放广告时,为了保证广告的后续效果,往往会进行广告设置,也就是给广告投放加上一些定向投放的条件。比如说,只投放给北京的用户,年龄段在 20 岁以上,对篮球感兴趣,使用某一型号的手机等。这些限制条件,我们都可以用标签的形式来表示。因此,一个广告设置,抽象出来就是一系列标签的组合。

所以我们说,广告引擎处理一个广告请求的过程,本质上就是根据用户的广告请求信息,找出标签匹配的广告设置,并将广告进行排序返回的过程。这一点非常重要,我们后面讲的内容都是围绕它来展开的,我希望你能记住它。

返回广告以后,我们还需要收集广告的后续监测数据,比如说是否展现给了用户,以及是否被用户点击等后续行为。那有些后续行为还涉及广告计费,比如,如果广告是按点击付费的话,那么只要有用户点击了广告,就会产生对应的费用。这时广告系统不仅需要进行相应的计费,还需要快速修改系统中的广告数据,使得系统能在广告主的预算花完之后就立即停止投放。

好了,以上就是广告引擎的工作过程。你会发现,尽管广告引擎在业务形态和流程上都有自己的特点,但是,它的核心检索流程和搜索引擎是类似的,也分为了索引构建、检索召回候选集和排序返回这三个部分。不过,和搜索引擎相比,由于广告引擎没有明确的关键词限制,因此在如何构造倒排索引上,广告引擎会有更大的灵活度。

接下来,我们就一起来看看,广告引擎是怎么结合自己的业务特点,来进行高性能的检索设计,从而能在 0.1 秒内返回合适的广告。

标签检索:合理使用标签过滤和划分索引空间

广告引擎的索引设计思路,是将广告设置的标签作为 Key 来构建倒排索引,在 posting list 中记录对应的广告设置列表,然后为标签进行 ID 编号,让系统处理标签的过程能更高效。这么说比较抽象,我来举个例子。

如果广告设置的标签是「地域:北京」「兴趣:篮球」「媒体:体育网站」,那我们可以使用一个 32 位的整数为每个标签进行编号。具体来说就是将 32 位的整数分为两部分,高位用来表示定向类型,低位用来表示这个定向类型下具体的标签。

比如说,我们采用高 8 位作为定向类型的编码,用来表示地域定向、兴趣定向和媒体定向等。用低 24 位,则作为这个定向类型下面的具体内容。那在地域定向里,低 24 位就是每个地区或者城市自己的编码。这样,我们就可以将广告设置的标签都转为一个编号了(高、低位的分配是可以根据实际需求灵活调整的)。

  1. 将标签加入过滤列表

那是不是所有的标签都可以作为倒排索引的 Key 呢?你可以先自己想一想,我们先来看一个例子。

如果所有的广告投放设置都选择投放在 App 上,那么「媒体类型:App」这个标签后面的 posting list 就保存了所有的广告设置。但是,这样的标签并不能将广告设置区分开。为了解决这个问题,我们可以使用类似 TF-IDF 算法中计算 IDF 的方式,找出区分度低的标签,不将它们加入倒排索引。

那我们什么时候使用这些标签呢?我们可以将这些标签加入「过滤列表」中,然后在倒排索引中检索出结果以后,加上一个过滤环节,也就是对检索结果进行遍历,在遍历过程中使用「过滤列表」中的标签进行检查,这样就完成了标签是否匹配的判断。

  1. 用标签进行索引分片

其实,对于标签的匹配使用,我们还有其他的方案。我们再来看一个例子,假设平台中有一半的广告投放设置希望投放在移动 App 上,另一半希望投放在 PC 网站上,那如果我们以「媒体类型:App」和「媒体类型:PC 网站」作为标签来建立倒排索引的话,这样的标签是有区分度的。但是由于这两个标签后面的 posting list 都会非常长,各自都保存着一半的广告设置。因此在进行 posting list 归并的时候,实际上就等于要遍历一半的广告设置。这反而会降低检索效率。

因此,对于「媒体类型」这类(以及「性别」、「操作系统」等)具有少量的标签值,但是每个标签值都有大规模区分度的设置维度来说,我们可以不把它们加入到倒排索引中,而是根据标签来将广告设置进行 分片。也就是把投放 PC 网站的广告设置作为一组,投放 App 的广告设置作为另外一组,分别建立倒排索引。

如果这样的有区分度的设置维度不止一个,那我们就使用树形结构进行划分,将最有区分度的设置维度(如「媒体类型」)作为根节点,不同的设置值作为分叉(如 PC 网站和 App 就是「媒体类型」维度下的两个分叉)。在这个节点下,如果有其他的设置也具有足够的区分度,那也可以作为子节点继续划分。然后对于被划分到同一个叶子节点下的一组,我们再利用标签建立倒排索引。

通过这样的树形结构,我们根据广告请求上的标签,就能快速定位到要找的索引分片,之后,再查找分片中的倒排索引就可以了。

总结来说,广告设置对广告引擎来说,就像搜索词对搜索引擎一样重要。但是对于广告设置,我们不会像关键词一样,全部加入倒排索引中,而是会分别加入到三个环节中:第一个环节,作为树形结构的节点分叉进行分流;第二个环节,作为倒排索引的 Key;第三个环节,在遍历候选结果时作为过滤条件。通过这样的设计,广告引擎中的检索空间就能被快速降低,从而提升检索效率,快速返回候选结果了。

向量检索:提供智能匹配能力

随着广告业务的演化,目前很多平台提供了一种新的广告投放模式:不是由广告主设置广告定向,而是由广告引擎在保证广告效果的前提下,自己决定如何召回广告。在这种情况下,广告引擎就可以摆脱标签的限制,使用向量来表示和检索,也就可以更精准地挖掘出合适的广告了。为什么要摆脱标签的限制呢?

我们来看个例子,在之前的标签系统中,当广告主想将广告投放给「喜欢篮球的人」时,如果一个用户身上的标签只有「喜欢运动」,那这个广告是不会投放给这个用户的。但如果广告主不进行广告定向限定,而是由广告引擎来决定如何召回广告,那广告引擎是可以针对「喜欢运动」的人投放这条广告的。

具体是怎么做的呢?我们可以将广告设置和用户兴趣都表示为高维空间的向量,这样,原来的每个标签就都是向量的一个维度了。然后我们使用最近邻检索技术,找到最近的点就可以返回结果了。这样的设计,本质上是使用机器的智能定向设置,代替了广告主手动的定向设置,从而大幅提升了广告设置的效率和效果。

不过,在我们使用向量检索来代替标签检索之后,系统的性能压力也会更大,因此,为了保证广告引擎能在 0.1 秒内返回广告检索结果,我们需要对向量检索进行加速操作。这时,我们可以使用第 16 讲中「聚类 + 倒排索引 + 乘积量化」的实现方案,来搭建广告引擎的向量检索系统,从而提高向量检索的检索效率。

打分排序:用非精准打分结合深度学习模型的精准打分

广告引擎除了在召回环节和搜索引擎不一样之外,在打分排序环节也有自己的特点。这主要是因为它们需要返回的结果数量不同。具体来说就是,在搜索引擎中,我们要返回 Top K 个结果,但是在展示广告业务中,广告引擎往往最后只会返回一条广告结果!因此,对于最后选出来的这一条广告,我们希望它和用户的匹配越精准越好。所以,在广告引擎中,我们会使用复杂的深度学习模型来打分排序。

但如果在召回阶段选出的候选广告数量很多,那全部使用开销很大的深度学习模型来进行打分的话,我们是很难将单次检索结果控制在 0.1 秒之内的。而且,如果召回的候选广告数量有几千条,广告引擎最终又只能选出一条,那这几千条的候选广告都使用深度学习模型进行计算,会造成大量的资源浪费。

为了解决这个问题,我们可以在召回和精准打分排序之间,加入一个非精准打分的环节,来更合理地使用资源。具体来说就是,我们可以基于简单的机器学习模型(如逻辑回归模型(LR)、梯度提升决策树(GBDT)、因子分解机(FM)等)配合少量的特征,来完成这个非精准打分环节,将候选广告的数量限制在几十个的量级。然后,我们再使用深度学习模型来进行精准打分,最后选出分数最高的一个广告进行投放。这样,我们就能大幅节省计算资源,提升检索效率了。

索引精简:在索引构建环节缩小检索空间

除了优化在线的召回和打分环节的检索效率之外,广告业务的特点,使得我们还可以在离线的索引构建环节,通过缩小检索空间来优化。这是因为,广告引擎和搜索引擎中检索对象的生命周期有着很大的不同。一般来说,一个网页只要上线就会存在很久,但是一个广告设置的状态却经常变化。这怎么理解呢?

比如说,当广告设置限定了投放的时间段时,那这个广告可能上午是有效的,下午就处于停投状态了。再比如说,如果广告预算花完了,那广告也会变为停投状态,但是充值后又会恢复成有效状态。举了这么多例子,我其实就是想告诉你,广告设置的生命周期变化非常快。

因此,如果我们不考虑这些情况,直接将所有的广告设置都加载到系统中进行索引和检索,然后在遍历过滤的环节,再来检查这些状态进行判断的话,就会带来大量的判断开销。

这种情况下,我们该怎么办呢?我们可以将过滤条件提前到离线的索引构建的环节。这是因为,这些过滤条件和定向设置没有关系,所以我们完全可以在索引构建的时候,就将这些广告设置过滤掉,仅为当前有效的广告设置进行索引,这样检索空间也就得到了大幅压缩。

当然,这种提前过滤有一个前提条件,那就是广告引擎需要提供实时高效的索引更新能力。好在,广告投放设置的体量一般不会像网页数那么庞大,一般都可以全部加载到内存中,因此,我们使用全量索引结合增量索引的更新机制,就可以对线上的索引进行实时更新了。

重点回顾

今天,我们以展示广告为例,学习了广告引擎的工作原理。并且,重点学习了,针对展示广告的特点,在不同的环节进行灵活的设计,来实现高性能的广告引擎。这些优化设计,我们可以概括为以下 4 点。

  1. 在标签检索引擎中,我们通过合理地将标签使用在树形检索 + 倒排索引 + 结果过滤这三个环节,来提高检索效率。
  2. 在向量检索引擎中,我们可以使用聚类 + 倒排索引 + 乘积量化的技术来加速检索。
  3. 在打分排序环节,增加一个非精准打分环节,这样我们就可以大幅降低使用深度学习模型带来的开销。
  4. 在索引构建环节,我们还可以将一些过滤条件前置,仅将当前有效的广告设置加入索引,然后通过全量索引 + 增量索引的更新方式,来保证过滤逻辑的有效。
相关文章
|
4月前
|
人工智能 供应链 小程序
高效赋能数字人:2025 精选工具大推荐
2025 年,生成式 AI 技术推动数字人工具从 “单一功能落地” 迈向 “全链路价值赋能”,不仅能解决 “降本增效” 的基础需求,更能助力个人与企业解锁 “场景创新”。以下精选 5 款能力差异化的数字人工具,从核心技术、适配场景、实用价值等维度拆解,帮你找到能真正落地的数字人解决方案。
1106 10
|
2月前
租用阿里云服务器的合同在哪申请?阿里云合同下载打印教程
阿里云服务器租用合同可在【费用与成本】-【合同】中申请。先提交合同申请,选择订单并填写信息创建草稿,确认无误后转为正式合同,即可下载电子版或打印纸质版。所有云产品合同均支持此流程。查看官方教程获取详细操作指引。
187 11
|
2月前
|
存储 缓存 NoSQL
存储系统:从检索技术角度剖析 LevelDB 的架构设计思想
LevelDB是Google开源的高性能键值存储系统,基于LSM树优化,采用跳表、读写分离、SSTable分层与Compaction等技术,结合BloomFilter、缓存机制与索引分离设计,显著提升数据读写与检索效率,广泛应用于工业级系统中。(238字)
|
2月前
|
存储 机器学习/深度学习 算法
最近邻检索(下):如何用乘积量化实现「拍照识花」功能?
AI时代,以图搜图、拍图识物广泛应用。其核心是图片特征提取与高维向量相似检索。本文解析聚类算法(如K-Means)与局部敏感哈希的区别,详解乘积量化压缩向量、倒排索引加速检索的技术原理,揭示图像检索背后的高效机制。(238字)
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
搜索引擎:输入搜索词以后,搜索引擎是怎么工作的?
搜索引擎通过爬虫抓取网页,经索引系统处理生成倒排索引,再由检索系统结合分词、纠错、推荐等技术理解用户意图,利用位置信息和最小窗口排序,精准返回结果。其核心在于以查询词为约束,实现高效相关性匹配。
|
2月前
|
自然语言处理 运维 负载均衡
索引拆分:大规模检索系统如何使用分布式技术加速检索?
本文介绍了分布式技术在大规模检索系统中的应用,重点探讨了如何通过索引拆分提升检索效率。常见的拆分方式有基于业务、文档(水平拆分)和关键词(垂直拆分)。其中,基于文档的拆分更易维护:新增文档仅影响一个分片,且负载更均衡,支持副本扩容应对热点查询,系统可扩展性强,是工业界主流方案。(238字)
|
2月前
|
存储 NoSQL 定位技术
空间检索(上):如何用 Geohash 实现「查找附近的人」功能?
本文介绍了如何高效实现“查找附近的人”功能,提出基于Geohash的区域编码与索引方案。通过将二维空间划分为带层次的编码区域,利用一维索引(如跳表、哈希表)快速检索目标区域及邻接区域用户,结合非精准与精准Top K检索策略,在保证性能的同时控制误差。适用于社交、出行等LBS场景。
|
2月前
|
机器学习/深度学习 算法 搜索推荐
精准 Top K 检索:搜索结果是怎么进行打分排序的?
搜索引擎排序直接影响用户体验,核心是Top K检索。本文介绍三种打分算法:经典TF-IDF衡量词项权重;BM25在此基础上优化,引入文档长度、词频饱和等因子;机器学习则融合数百特征自动学习权重,提升排序精度。最后通过堆排序高效实现Top K结果返回,兼顾性能与效果。(239字)
|
2月前
|
机器学习/深度学习 搜索推荐 算法
非精准 Top K 检索:如何给检索结果的排序过程装上加速器?
本文介绍了非精准 Top K 检索的优化思路及三种实现方法:基于静态质量得分排序截断、胜者表利用词频打分、分层索引两阶段检索。核心思想是将计算前置至离线阶段,降低在线打分开销,通过快速截断提升检索效率。该方法广泛应用于搜索与推荐系统,结合精准排序形成高效两级检索架构。
|
2月前
|
敏捷开发 Dubbo Java
微服务技术栈
本文介绍敏捷开发中需求人日评估方法,涵盖开发、自测、联调、测试及发布各阶段周期估算,并提供常见功能如增删改查、导入导出、远程调用等参考人日,助力团队科学排期。
86 15