基于 YOLOv8 的焊接表面缺陷检测|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

简介: 本项目基于 YOLOv8 深度学习目标检测模型,结合 PyQt5 图形界面,实现了一个完整的焊接表面缺陷检测系统。通过实际演示可以看出,该系统能够对单张图片、批量图片、视频以及实时摄像头流进行高精度检测,并自动标注缺陷位置和类别,支持检测结果的保存和复查,为工业生产线提供了高效、智能化的焊接质量监控手段。

基于 YOLOv8 的焊接表面缺陷检测|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程

源码在文末哔哩哔哩视频简介处获取。

nc: 3
names: [
  '焊接不良',
  '焊接良好',
  '焊接缺陷'
]

项目摘要

本项目结合 YOLOv8 检测模型PyQt5 图形界面工具,实现了焊接表面缺陷的自动检测与分类。数据集包含三类标注:焊接不良、焊接良好、焊接缺陷,均采用 YOLO 格式标注,可直接用于训练。

项目特点:

  • 数据驱动:数据集经过严格划分,包括训练集、验证集和测试集,保证模型训练与评估的科学性。
  • 全流程覆盖:从数据准备、模型训练、推理测试到可视化界面展示,一应俱全。
  • 易于扩展:用户可替换数据集或增加检测类别,快速适配新的工业检测需求。

通过本项目,开发者可以快速构建高精度焊缝检测系统,实现生产线焊接质量的自动监控与缺陷报警,为工业智能制造提供强大技术支撑。

@[toc]

前言

随着工业自动化和智能制造的发展,焊接质量检测成为保证产品性能和安全的重要环节。传统人工检测存在效率低、主观性强、成本高等问题,而基于深度学习的自动化检测系统,可以实现高精度、低成本、实时化的焊接缺陷识别。

本项目利用 YOLOv8 的高性能目标检测能力,结合 PyQt5 的可视化界面,实现了一个完整、开箱即用的焊接缺陷检测方案。无论是学术研究还是工业应用,都能快速上手并进行二次开发。

一、软件核心功能介绍及效果演示

本项目数据集包含千张焊接表面图片,按照训练集、验证集和测试集划分,三类标注如下:

nc: 3
names: [
  '焊接不良',
  '焊接良好',
  '焊接缺陷'
]
  • 焊接不良:存在明显缺陷,如焊缝断裂、气孔等
  • 焊接良好:焊缝平整、无明显瑕疵
  • 焊接缺陷:轻微缺陷或局部异常,可作为辅助判断

数据集可直接用于 YOLOv8 模型训练,标注格式完全兼容 YOLO 框架。

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image-20251109005902146


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image-20251109005836642


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

image-20251109005928639


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。

image-20251109005958976


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20251109010015376

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):

image-20251109010138803

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20251109010112974

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

image-20251109010159274

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码

至项目实录视频下方获取:

哔哩哔哩视频演示:https://www.bilibili.com/video/BV1NrkiBJEcH/

image-20250801135823301

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本项目基于 YOLOv8 深度学习目标检测模型,结合 PyQt5 图形界面,实现了一个完整的焊接表面缺陷检测系统。通过实际演示可以看出,该系统能够对单张图片、批量图片、视频以及实时摄像头流进行高精度检测,并自动标注缺陷位置和类别,支持检测结果的保存和复查,为工业生产线提供了高效、智能化的焊接质量监控手段。

项目的核心亮点包括:

  1. 高精度检测:利用 YOLOv8 的先进架构与损失函数,实现焊接不良、焊接良好和焊接缺陷的精确分类。
  2. 全流程覆盖:从数据准备、模型训练、推理到可视化界面展示,用户可快速部署和复现。
  3. 可扩展性强:支持新增类别、替换数据集或自定义检测场景,适应不同工业检测需求。
  4. 易于部署:打包了完整源码与预训练权重,开箱即可运行,无需复杂环境配置。
  5. 结果可视化与分析:提供训练曲线、混淆矩阵以及检测结果图,便于模型评估和优化。

总体来看,该系统不仅降低了人工检测成本和主观误差,还为工业智能制造提供了可落地的技术解决方案。无论是科研实验还是生产实践,开发者都可以在此基础上快速搭建高性能焊缝检测系统,实现智能化生产监控和缺陷报警。

相关文章
|
3月前
|
机器学习/深度学习 人工智能 机器人
焊接情况检测数据集(千张图片已划分)| 面向工业质检的目标检测训练集
总结来看,本次分享的焊接情况检测数据集为工业智能化提供了坚实的基础。数据集涵盖了“良好焊缝”、“不良焊缝”和“缺陷”三大类别,采用了标准的 YOLO 标注格式,保证了在目标检测任务中能够高效、准确地训练模型。通过合理划分训练集、验证集和测试集,开发者可以充分利用数据进行模型优化与验证,从而在实际工业生产环境中实现对焊接表面缺陷的自动检测与监控。
焊接情况检测数据集(千张图片已划分)| 面向工业质检的目标检测训练集
|
3月前
|
机器学习/深度学习 监控 数据可视化
基于YOLOv8的水稻病害检测项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
基于YOLOv8的水稻病害检测系统,集成PyQt5可视化界面,支持图片、视频、摄像头实时识别,可检测细菌性叶斑病、褐斑病、叶霉病。提供完整源码、数据集、训练模型及部署教程,开箱即用,适用于智慧农业、科研与教学场景。
基于YOLOv8的水稻病害检测项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
2月前
|
机器学习/深度学习 人工智能 运维
金属外表多种生锈检测数据集(1200张图片已划分)|面向工业巡检的目标检测数据集
本数据集包含1202张已标注划分的金属表面锈蚀图像,涵盖缝隙腐蚀、点蚀、均匀腐蚀和一般性腐蚀四类,适用于YOLO等目标检测模型训练。广泛用于工业设备、桥梁管道、建筑钢结构的智能巡检与安全评估,助力实现锈蚀自动识别与全生命周期管理。
|
2月前
|
机器学习/深度学习 人工智能 算法
从人工目检到 AI 质检-YOLOv8 驱动的 PCB 缺陷检测系统【完整源码】
本项目基于YOLOv8打造全自动PCB缺陷检测系统,涵盖缺孔、短路等六类常见缺陷。采用PyTorch+PyQt5构建端到端应用,支持图片、视频及实时摄像头检测,提供完整源码、模型权重与数据集,助力工业质检智能化升级。
332 6
从人工目检到 AI 质检-YOLOv8 驱动的 PCB 缺陷检测系统【完整源码】
|
2月前
|
机器学习/深度学习 人工智能 编解码
专用蚊子苍蝇检测数据集(含背景样本):适用于目标检测任务
本数据集专为蚊子、苍蝇目标检测打造,含1500张图片(蚊子、苍蝇各600+,背景200+),标注规范,采用YOLO格式,适配YOLOv8等模型。涵盖真实场景干扰,提升模型泛化能力,适用于智能家居、公共卫生、工业防控及AI教学科研,助力高效精准虫害识别系统开发。
专用蚊子苍蝇检测数据集(含背景样本):适用于目标检测任务
|
3月前
|
机器学习/深度学习 人工智能 监控
番茄叶片病害检测数据集(千张图片已划分)| AI训练适用于目标检测任务
在农业领域,植物病害检测是确保作物健康和提高农业生产效率的关键任务之一。随着计算机视觉技术的快速发展,基于深度学习的目标检测方法成为了病害识别的主流手段。为此,专门针对番茄叶片病害检测任务,我们推出了一个经过精心设计的番茄叶片病害检测数据集。该数据集包含了10,853张带标签的图像,覆盖了10种常见的番茄叶片病害类型,支持YOLO等先进的目标检测模型训练,旨在帮助研究人员和开发者提高农作物病害自动化检测的能力。
583 40
番茄叶片病害检测数据集(千张图片已划分)| AI训练适用于目标检测任务
|
4月前
|
人工智能 监控 并行计算
厨房食品卫生与安全检测14类数据集(18万张图片,已划分、已标注)——AI智能检测的行业实践基石
本数据集包含18万张标注图像,覆盖蟑螂、老鼠、口罩佩戴等14类厨房安全目标,专为YOLO等目标检测模型设计,助力AI实现厨房卫生智能监控,推动食品安全数字化升级。
厨房食品卫生与安全检测14类数据集(18万张图片,已划分、已标注)——AI智能检测的行业实践基石
|
3月前
|
机器学习/深度学习 人工智能 监控
翻墙、攀爬、跨越围栏等违规行为检测数据集(10,000 张图片已划分)—安全检测实践
本数据集包含10,000张标注图片,专注翻墙、攀爬等违规行为检测,适用于YOLOv8模型训练。涵盖工地、校园等多种场景,支持智能安防、视频分析等应用,助力构建高效安全监控系统。
翻墙、攀爬、跨越围栏等违规行为检测数据集(10,000 张图片已划分)—安全检测实践
|
6月前
|
机器学习/深度学习 数据采集 算法
PCB电路板缺陷检测数据集(近千张图片已划分、已标注)| 适用于YOLO系列深度学习检测任务【数据集分享】
在现代电子制造中,印刷电路板(PCB)是几乎所有电子设备的核心组成部分。随着PCB设计复杂度不断增加,人工检测PCB缺陷不仅效率低,而且容易漏检或误判。因此,利用计算机视觉和深度学习技术对PCB缺陷进行自动检测成为行业发展的必然趋势。
PCB电路板缺陷检测数据集(近千张图片已划分、已标注)| 适用于YOLO系列深度学习检测任务【数据集分享】