Stream&Kotlin 还能再进化成什么

简介: Java 早期缺乏简洁的数据集运算语法,导致开发效率低下。Java 8 引入的 Stream API 和 Kotlin 在一定程度上改善了这一状况,但仍不及 SQL 简洁。 SPL 作为一种解释型动态语言,提供了比 SQL 更强大的结构化数据处理能力,支持丰富的计算函数和流程控制语句,代码简洁易维护,且可无缝集成到 Java 应用中,支持多种数据源,适用于复杂业务逻辑的开发。

Java 很长时间都没有提供直接的数据集运算语法,写个简单的 SUM 都要很多行,更不要说分组、排序等复杂运算了。完全同样数据处理功能的代码远比 SQL 长,开发效率低下。
从 Java8 开始,Stream 登场,提供了支持 Lambda 语法的集合运算类。程序员不再为 SUM 就写很多行了,常规的分组、排序都有了现成函数。
数据集上的排序写成这样,比早期 Java 确实方便很多:

Stream<Order> result=Orders
.sorted((sAmount1,sAmount2)->Double.compare(sAmount1.Amount,sAmount2.Amount))
.sorted((sClient1,sClient2)->CharSequence.compare(sClient2.Client,sClient1.Client));

不过,和 SQL 相比,方便程度仍然差距不小:

select * from Orders order by Client desc, Amount

更复杂一些的分组汇总

Calendar cal=Calendar.getInstance();
Map<Object, DoubleSummaryStatistics> c=Orders.collect( Collectors.groupingBy(
    r->{
   
        cal.setTime(r.OrderDate);
        return cal.get(Calendar.YEAR) + "_" + r.SellerId;
    }, 
    Collectors.summarizingDouble(r->{
   return r.Amount;})
));
for(Object Sellerid:c.keySet()){
   
    DoubleSummaryStatistics r =c.get(Sellerid);
    String year_sellerid[]=((String)Sellerid).split("_");
    System.out.println("group is (year):"+year_sellerid[0]+"\t (sellerid):"+year_sellerid[1]+"\t sum is:"+r.getSum()+"\t count is:"+r.getCount());
}

大体等价于 SQL 语句:

select year(OrderDate), Sellerid, sum(Amount), count(1) from Orders group by year(OrderDate), Sellerid

差距相当明显。

基于 Stream 又发展出了 Kotlin,它不再直接使用 Java 语言,这样不再受 Java 的局限,可以使用新的语法和符号,写出更简洁的 Lambda 表达式。
比如前面那个排序:

var resutl=Orders.sortedBy{
   it.Amount}.sortedByDescending{
   it.Client}

简洁程度已经和 SQL 很接近了。
但面对复杂些的运算,仍然不够方便,比如前述的分组汇总:

data class Grp(var OrderYear:Int,var SellerId:Int)
data class Agg(var sumAmount: Double,var rowCount:Int)
var result=Orders.groupingBy{
    Grp(it.OrderDate.year+1900,it.SellerId) }
    .fold( Agg(0.0,0),{
   acc, elem -> Agg(acc.sumAmount + elem.Amount,acc.rowCount+1) })
    .toSortedMap(compareBy<Grp> {
    it. OrderYear}.thenBy {
    it. SellerId} )
result.forEach{
    println("group fields:${it.key.OrderYear}\t${it.key.SellerId}\t aggregate fields:${it.value.sumAmount}\t${it.value.rowCount}") }

虽然比 Stream 简单了,但和 SQL 还是没法比。

看来,想在 Java 中取代 SQL(以获得更好的架构)编写结构化数据集相关的业务逻辑,Stream 和 Kotlin 还需要继续进化。
开源软件 SPL 可以一步到位实现 Stream 和 Kotlin 的目标。
SPL 也是纯 Java 的开源软件,和 Stream 和 Kotlin 类似,都可以完全无缝地集成进 Java 应用中,一起享受成熟 Java 框架的优势。

和 Kotlin 类似, SPL做为全新的编程语言。但它并不是从 Stream 和 Kotlin 发展而来的。
为什么要设计一种新的程序语言而不直接封装成 Java API 呢?
Java 是编译型的静态语言,在这个基础上很难实现动态数据结构和便捷的 Lambda 语法,而这又是结构化数据运算中特别常见的,也是 SQL 的优势所在。
SQL 中任何一个 SELECT 语句都会产生一个新的数据结构,可以随意添加删除字段,而不必事先定义结构(类),这在结构化数据运算中家常便饭。但 Java 这类语言却不行,在代码编译阶段就要把用到的结构(类)都定义好,可以认为不能在执行过程中动态产生新的类(Java 理论上支持动态编译,但复杂度太大)。如果用一个专门的类来表示所有数据表,把字段名也作为类的数据成员,这又不能直接使用类的属性语法来引用字段,代码非常麻烦。
Lambda 语法是在 SQL 中大量使用,比如 WHERE 中的条件,本质上就是个 Lambda 表达式。Java 这种静态语言虽然现在也支持 Lambda 语法,但方便程度远远不如 SQL。每次书写时还是要有个函数头定义来告诉编译器现在要写 Lambda 函数了,代码看着很乱。在 Lambda 函数中也不能直接引用数据表的字段名,比如用单价和数量计算金额时,如果用于表示当前成员的参数名为 x,则需要写成 "x. 单价 x. 数量" 这种啰嗦的形式。而在 SQL 中可以更为直观地写成 "单价 数量"。
解释型的动态语言才能实现 SQL 的这些特征,可以随时生成新的数据结构,也可以根据宿主函数本身决定当前参数是不是 Lambda 函数,从而没必要写个定义头,更可以根据上下文正确引用未写表名的字段。
SQL 是解释型动态语言,SPL 也是。Java 以及 Java 基础上的 Kotlin 和 Scala 都不是,所以用这些语言很难书写出简洁的代码。

在解释型动态语言基础上,SPL 提供了比 SQL 更完善的结构化数据对象(表、记录、游标)和更丰富的计算函数,包括 SQL 中有的过滤、分组、连接等基本运算,还有 SQL 中缺失的有序、集合等运算。所以,SPL 代码通常会比 SQL 更简洁易维护,比 Stream 和 Kotlin 就更强得多。
前面两个排序和分组运算,用 SPL 写出来比 SQL 更简洁:

Orders.sort( -Client, Amount)
Orders.groups( year(OrderDate), Sellerid; sum(Amount), count(1) )

更复杂一些的任务,比如这个任务,计算一支股票最长连续上涨的天数,SQL 要写成多层嵌套,冗长且难懂:

select max(ContinuousDays) from (
select count(*) ContinuousDays from (
select sum(UpDownTag) over (order by TradeDate) NoRisingDays from (
select TradeDate,case when Price>lag(price) over (order by TradeDate) then 0 else 1 end UpDownTag from Stock ))
group by NoRisingDays )

Stream 和 Kotlin 缺乏窗口函数等支持,同样的计算逻辑写出来更会困难得多也长得多,而用 SPL 就非常简单:

Stock.sort(TradeDate).group@i(Price<Price[-1]).max(~.len())

SPL 还有完善的流程控制语句,像 for 循环,if 分支都不在话下,还支持子程序调用。只用 SPL 就能实现非常复杂的业务逻辑,直接构成完整的业务单元,不需要上层 Java 代码来配合,主程序只要简单地调用 SPL 脚本就可以了。
esProc SPL 是纯 Java 程序,它可以被 Java 调用,也可以调用 Java。这样即便有个别用 SPL 不易实现而要使用 Java 实现的代码(比如某些对外的接口)或者已经有的现成 Java 代码,也都可以再集成进 SPL 中。SPL 脚本和主 Java 应用程序可以融为一体。

作为解释型语言,SPL 脚本可以存储成文件,置于主应用程序之外,代码修改可以独立进行且立即生效,不像基于 Stream 和 Kotlin 写的代码在修改后还要和主程序一起重新编译,整个应用都要停机重启。这样可以做到业务逻辑的热切换,特别适合支持变化频繁的业务。

4a8fe11526084d5e22730c5c756dead5_e76b48cd7f524b5f895fa8d786323466_clipboard.png

SPL 支持的数据源也很丰富,无论关系数据库还是 NoSQL 或者 Kafka、Restful,无论是常规二维表还是多层次的 json,SPL 都可以计算直接读取后处理。而 Stream 或 Kotlin 都不涉及这些内容,还需要自己写 Java 代码访问。

70215fbaa0bf72f0c29229ed4cf2ae08_dfc2a453b9af41198c3d19a9913cc08b_clipboard.png

非常特别地,SPL 代码写在格子里,这和通常写成文本的代码很不一样。独立的开发环境简洁易用,提供单步执行、设置断点、所见即所得的结果预览,调试开发更方便。

ab2f068fed126d9c4fb3c2dd723bdf16_b020d43ec7884123ba721c9fd0735080_clipboard.png

SPL是开源的,乾学院对 SPL 有更详细的介绍。

相关文章
|
存储 SQL JSON
从 Stream 到 Kotlin 再到 SPL,谁更快?
JAVA开发中经常会遇到不方便使用数据库,但又要进行结构化数据计算的场景。JAVA早期没有提供相关类库,即使排序、分组这种基本计算也要硬写代码,开发效率很低。后来JAVA8推出了Stream库,凭借Lambda表达式、链式编程风格、集合函数,才终于解决了结构化数据计算类库从无到有的问题。
175 0
从 Stream 到 Kotlin 再到 SPL,谁更快?
|
2月前
|
JSON 调度 数据库
Android面试之5个Kotlin深度面试题:协程、密封类和高阶函数
本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”或扫描文章底部二维码关注,和我一起每天进步一点点。文章详细解析了Kotlin中的协程、扩展函数、高阶函数、密封类及`inline`和`reified`关键字在Android开发中的应用,帮助读者更好地理解和使用这些特性。
35 1
|
3月前
|
Android开发 开发者 Kotlin
告别AsyncTask:一招教你用Kotlin协程重构Android应用,流畅度飙升的秘密武器
【9月更文挑战第13天】随着Android应用复杂度的增加,有效管理异步任务成为关键。Kotlin协程提供了一种优雅的并发操作处理方式,使异步编程更简单直观。本文通过具体示例介绍如何使用Kotlin协程优化Android应用性能,包括网络数据加载和UI更新。首先需在`build.gradle`中添加coroutines依赖。接着,通过定义挂起函数执行网络请求,并在`ViewModel`中使用`viewModelScope`启动协程,结合`Dispatchers.Main`更新UI,避免内存泄漏。使用协程不仅简化代码,还提升了程序健壮性。
105 1
|
4月前
|
调度 Android开发 开发者
【颠覆传统!】Kotlin协程魔法:解锁Android应用极速体验,带你领略多线程优化的无限魅力!
【8月更文挑战第12天】多线程对现代Android应用至关重要,能显著提升性能与体验。本文探讨Kotlin中的高效多线程实践。首先,理解主线程(UI线程)的角色,避免阻塞它。Kotlin协程作为轻量级线程,简化异步编程。示例展示了如何使用`kotlinx.coroutines`库创建协程,执行后台任务而不影响UI。此外,通过协程与Retrofit结合,实现了网络数据的异步加载,并安全地更新UI。协程不仅提高代码可读性,还能确保程序高效运行,不阻塞主线程,是构建高性能Android应用的关键。
66 4
|
5月前
|
安全 Android开发 Kotlin
Android经典面试题之Kotlin延迟初始化的by lazy和lateinit有什么区别?
**Kotlin中的`by lazy`和`lateinit`都是延迟初始化技术。`by lazy`用于只读属性,线程安全,首次访问时初始化;`lateinit`用于可变属性,需手动初始化,非线程安全。`by lazy`支持线程安全模式选择,而`lateinit`适用于构造函数后初始化。选择依赖于属性特性和使用场景。**
180 5
Android经典面试题之Kotlin延迟初始化的by lazy和lateinit有什么区别?
|
5月前
|
安全 Android开发 Kotlin
Android经典面试题之Kotlin中常见作用域函数
**Kotlin作用域函数概览**: `let`, `run`, `with`, `apply`, `also`. `let`安全调用并返回结果; `run`在上下文中执行代码并返回结果; `with`执行代码块,返回结果; `apply`配置对象后返回自身; `also`附加操作后返回自身
62 8
|
5月前
|
安全 Java Android开发
探索Android应用开发中的Kotlin语言
【7月更文挑战第19天】在移动应用开发的浩瀚宇宙中,Kotlin这颗新星以其简洁、安全与现代化的特性,正迅速在Android开发者之间获得青睐。从基本的语法结构到高级的编程技巧,本文将引导读者穿梭于Kotlin的世界,揭示其如何优化Android应用的开发流程并提升代码的可读性与维护性。我们将一起探究Kotlin的核心概念,包括它的数据类型、类和接口、可见性修饰符以及高阶函数等特性,并了解这些特性是如何在实际项目中得以应用的。无论你是刚入门的新手还是寻求进阶的开发者,这篇文章都将为你提供有价值的见解和实践指导。
|
5月前
|
SQL 安全 Java
Android经典面试题之Kotlin中object关键字实现的是什么类型的单例模式?原理是什么?怎么实现双重检验锁单例模式?
Kotlin 单例模式概览 在 Kotlin 中,`object` 关键字轻松实现单例,提供线程安全的“饿汉式”单例。例如: 要延迟初始化,可使用 `companion object` 和 `lazy` 委托: 对于参数化的线程安全单例,结合 `@Volatile` 和 `synchronized`
69 6
|
5月前
|
存储 前端开发 测试技术
Android Kotlin中使用 LiveData、ViewModel快速实现MVVM模式
使用Kotlin实现MVVM模式是Android开发的现代实践。该模式分离UI和业务逻辑,借助LiveData、ViewModel和DataBinding增强代码可维护性。步骤包括创建Model层处理数据,ViewModel层作为数据桥梁,以及View层展示UI。添加相关依赖后,Model类存储数据,ViewModel类通过LiveData管理变化,而View层使用DataBinding实时更新UI。这种架构提升代码可测试性和模块化。
206 2
|
6月前
|
安全 Java 编译器
Android面试题之Java 泛型和Kotlin泛型
**Java泛型是JDK5引入的特性,用于编译时类型检查和安全。泛型擦除会在运行时移除类型参数,用Object或边界类型替换。这导致几个限制:不能直接创建泛型实例,不能使用instanceof,泛型数组与协变冲突,以及在静态上下文中的限制。通配符如<?>用于增强灵活性,<? extends T>只读,<? super T>只写。面试题涉及泛型原理和擦除机制。
43 3
Android面试题之Java 泛型和Kotlin泛型