从 Stream 到 Kotlin 再到 SPL,谁更快?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: JAVA开发中经常会遇到不方便使用数据库,但又要进行结构化数据计算的场景。JAVA早期没有提供相关类库,即使排序、分组这种基本计算也要硬写代码,开发效率很低。后来JAVA8推出了Stream库,凭借Lambda表达式、链式编程风格、集合函数,才终于解决了结构化数据计算类库从无到有的问题。

JAVA开发中经常会遇到不方便使用数据库,但又要进行结构化数据计算的场景。JAVA早期没有提供相关类库,即使排序、分组这种基本计算也要硬写代码,开发效率很低。后来JAVA8推出了Stream库,凭借Lambda表达式、链式编程风格、集合函数,才终于解决了结构化数据计算类库从无到有的问题。


Stream 可以简化结构化数据的计算

比如排序:


Stream<Order> result=Orders
.sorted((sAmount1,sAmount2)->Double.compare(sAmount1.Amount,sAmount2.Amount))
.sorted((sClient1,sClient2)->CharSequence.compare(sClient2.Client,sClient1.Client));
Stream<Order> result=Orders
.sorted((sAmount1,sAmount2)->Double.compare(sAmount1.Amount,sAmount2.Amount))
.sorted((sClient1,sClient2)->CharSequence.compare(sClient2.Client,sClient1.Client));


上面代码中的sorted是集合函数,可方便地进行排序。"(参数)->函数体"的写法即Lambda表达式,可以简化匿名函数的定义。两个sorted函数连在一起用属于链式编程风格,可以使多步骤计算变得直观。


Stream 计算能力还不够强


仍然以上面的排序为例,sorted函数只需要知道排序字段和顺序/逆序就够了,参考SQL的写法"…from Orders order by Client desc, Amount",但实际上还要额外输入排序字段的数据类型。顺序/逆序用asc/desc(或+/-)等符号就可以简单表示了,但这里却要用compare函数。另外,实际要排序的字段顺序和代码写出来的顺序是相反的,有些反直觉。


再比如分组汇总:


Calendar cal=Calendar.getInstance();
Map<Object, DoubleSummaryStatistics> c=Orders.collect(Collectors.groupingBy(
        r->{
            cal.setTime(r.OrderDate);
            return cal.get(Calendar.YEAR)+"_"+r.SellerId;
            },
            Collectors.summarizingDouble(r->{
                return r.Amount;
            })
        )
);
    for(Object sellerid:c.keySet()){
        DoubleSummaryStatistics r =c.get(sellerid);
        String year_sellerid[]=((String)sellerid).split("_");
        System.out.println("group is (year):"+year_sellerid[0]+"\t (sellerid):"+year_sellerid[1]+"\t sum is:"+r.getSum()+"\t count is:"+r.getCount());
    }
Calendar cal=Calendar.getInstance();
Map<Object, DoubleSummaryStatistics> c=Orders.collect(Collectors.groupingBy(
        r->{
            cal.setTime(r.OrderDate);
            return cal.get(Calendar.YEAR)+"_"+r.SellerId;
            },
            Collectors.summarizingDouble(r->{
                return r.Amount;
            })
        )
);
    for(Object sellerid:c.keySet()){
        DoubleSummaryStatistics r =c.get(sellerid);
        String year_sellerid[]=((String)sellerid).split("_");
        System.out.println("group is (year):"+year_sellerid[0]+"\t (sellerid):"+year_sellerid[1]+"\t sum is:"+r.getSum()+"\t count is:"+r.getCount());
    }


上面代码中,所有出现字段名的地方,都要先写上表名,即"表名.字段名",而不能像SQL那样省略表名。匿名函数语法复杂,随着代码量的增加,复杂度迅速增长。两个匿名函数形成嵌套,代码更难解读。实现一个分组汇总功能要用多个函数和类,包括groupingBy、collect、Collectors、summarizingDouble、DoubleSummaryStatistics等,学习成本不低。分组汇总的结果是Map,而不是结构化数据类型,如果要继续计算,通常要定义新的结构化数据类型,并进行转换类型,处理过程很繁琐。两个分组字段在结构化数据计算中很常见,但函数grouping只支持一个分组变量,为了让一个变量代表两个字段,就要采取一些变通技巧,比如新建一个两字段的结构化数据类型,或者把两个字段用下划线拼起来,这让代码变得更加繁琐。


Stream 计算能力不足,原因在于其基础语言JAVA 是编译型语言,无法提供专业的结构化数据对象,缺少来自底层的有力支持 。


JAVA是编译型语言,返回值的结构必须事先定义,遇到较多的中间步骤时,就要定义多个数据结构,这不仅让代码变得繁琐,还导致参数处理不灵活,要用一套复杂的规则来实现匿名语法。解释性语言则天然支持动态结构,还可以方便地将参数表达式指定为值参数或函数参数,提供更简单的匿名函数。


在这种情况下,Kotlin应运而生。Kotlin是基于JAVA的现代开发语言,所谓现代,重点体现在对JAVA语法尤其是Stream的改进上,即Lambda表达式更加简洁,集合函数更加丰富。


Kotlin 计算能力强于Stream

比如排序:


var resutl=Orders.sortedBy{it.Amount}.sortedByDescending{it.Client}
var resutl=Orders.sortedBy{it.Amount}.sortedByDescending{it.Client}


上面代码无须指明排序字段的数据类型,无须用函数表达顺序/逆序,直接引用it作为匿名函数的默认参数,而不是刻意定义,整体比Stream简短不少。


Kotlin 改进并不大,计算能力仍然不足

仍然以排序为例,Kotlin虽然提供了it这个默认参数,但理论上只要知道字段名就够了,没必要带上表名(it)。排序函数只能对一个字段进行排序,不能动态接收多个字段。

再比如分组汇总:


data class Grp(var OrderYear:Int,var SellerId:Int)
data class Agg(var sumAmount: Double,var rowCount:Int)
var result=Orders.groupingBy{Grp(it.OrderDate.year+1900,it.SellerId)}
    .fold(Agg(0.0,0),{
        acc, elem -> Agg(acc.sumAmount + elem.Amount,acc.rowCount+1)
    })
.toSortedMap(compareBy<Grp> { it. OrderYear}.thenBy { it. SellerId})
result.forEach{println("group fields:${it.key.OrderYear}\t${it.key.SellerId}\t aggregate fields:${it.value.sumAmount}\t${it.value.rowCount}") }
data class Grp(var OrderYear:Int,var SellerId:Int)
data class Agg(var sumAmount: Double,var rowCount:Int)
var result=Orders.groupingBy{Grp(it.OrderDate.year+1900,it.SellerId)}
    .fold(Agg(0.0,0),{
        acc, elem -> Agg(acc.sumAmount + elem.Amount,acc.rowCount+1)
    })
.toSortedMap(compareBy<Grp> { it. OrderYear}.thenBy { it. SellerId})
result.forEach{println("group fields:${it.key.OrderYear}\t${it.key.SellerId}\t aggregate fields:${it.value.sumAmount}\t${it.value.rowCount}") }

上面代码中,一个分组汇总的动作,需要用到多个函数,包括复杂的嵌套函数。用到字段的地方要带上表名。分组汇总的结果不是结构化数据类型。要事先定义中间结果的数据结构。


如果继续考察集合、关联等更多的计算,就会发现同样的规律:Kotlin代码的确比Stream短一些,但大都是无关紧要的量变,并未发生深刻的质变,该有的步骤一个不少。


Kotlin也不支持动态数据结构,无法提供专业的结构化数据对象,难以真正简化Lambda语法,无法脱离表名直接引用字段,无法直接支持动态的多字段计算(比如多字段排序)。


esProc SPL的出现,将会彻底改观JAVA生态下结构化数据处理的困境。


esProc SPL是JVM下的开源结构化数据计算语言,提供了专业的结构化数据对象,内置丰富的计算函数,灵活简洁的语法,易于集成的JDBC接口,擅长简化复杂计算。


SPL 内置丰富的计算函数实现基础计算


比如排序:=Orders.sort(-Client, Amount)


SPL无须指明排序字段的数据类型,无须用函数指明方向/逆序,使用字段时无须附带表名,一个函数就可以动态地对多个字段进行排序。


分组汇总:=Orders.groups(year(OrderDate),Client; sum(Amount),count(1))


上面的计算结果仍然是结构化数据对象,可以直接参与下一步计算。对双字段进行分组或汇总时,也不需要事先定义数据结构。整体代码没有多余的函数,sum和count用法简洁易懂,甚至很难觉察这是嵌套的匿名函数。


更多计算也同样简单:


去重:=Orders.id(Client)


模糊查询:=Orders.select(Amount*Quantity>3000 && like(Client,“S”))


关联:=join(Orders:o,SellerId ; Employees:e,EId).groups(e.Dept; sum(o.Amount))



SPL 提供了JDBC 接口,可被JAVA 代码无缝调用


Class.forName("com.esproc.jdbc.InternalDriver");
Connection connection =DriverManager.getConnection("jdbc:esproc:local://");
Statement statement = connection.createStatement();
String str="=T(\"D:/Orders.xls\"). Orders.groups(year(OrderDate),Client; sum(Amount))";
ResultSet result = statement.executeQuery(str);
Class.forName("com.esproc.jdbc.InternalDriver");
Connection connection =DriverManager.getConnection("jdbc:esproc:local://");
Statement statement = connection.createStatement();
String str="=T(\"D:/Orders.xls\"). Orders.groups(year(OrderDate),Client; sum(Amount))";
ResultSet result = statement.executeQuery(str);


SPL 语法风格简洁灵活,具有强大的计算能力。


SPL可简化分步计算、有序计算、分组后计算等逻辑较复杂的计算,很多SQL/存储过程难以实现的计算,用SPL解决起来就很轻松。比如,找出销售额累计占到一半的前n个大客户,并按销售额从大到小排序:



A
B
1 /取数据
2 =A1.sort(amount:-1) /销售额逆序排序
3 =A2.cumulate(amount) /计算累计序列
4 =A3.m(-1)/2 /最后的累计即总额
5 =A3.pselect(~>=A4) /超过一半的位置
6 =A2(to(A5)) /按位置取值


除了计算能力,SPL在系统架构、数据源、中间数据存储、计算性能上也有一些特有的优势,这些优势有助于SPL进行库外结构化数据计算。


SPL 支持计算热切换和代码外置,可降低系统耦合性。


比如,将上面的SPL代码存为脚本文件,再在JAVA中以存储过程的形式调用文件名:


Class.forName("com.esproc.jdbc.InternalDriver");
Connection connection =DriverManager.getConnection("jdbc:esproc:local://");
Statement statement = connection.createStatement();
ResultSet result = statement.executeQuery("call getClient()");
Class.forName("com.esproc.jdbc.InternalDriver");
Connection connection =DriverManager.getConnection("jdbc:esproc:local://");
Statement statement = connection.createStatement();
ResultSet result = statement.executeQuery("call getClient()");


SPL是解释型语言,修改后可直接运行,无须编译,不必重启JAVA服务。SPL代码外置于JAVA,通过文件名被调用,不依赖JAVA代码,耦合性低。


SPL 支持多种数据源,可进行跨源计算和跨库计算。


SPL支持各类数据库,txt\csv\xls等文件,MongoDB、Hadoop、redis、ElasticSearch、Kafka、Cassandra等NoSQL,特别地,还支持WebService XML、Restful Json等多层数据:



A
1 =json(file(“d:/Orders.json”).read())
2 =json(A1).conj()
3 =A2.select(Amount>p_start && Amount<=p_end)



对文本文件和数据库进行跨源关联:

23.png

SPL 提供了自有存储格式,可临时或永久存储数据,并进行高性能计算。


SPL支持btx存储格式,适合暂存来自于低速数据源的数据,比如CSV:



A
B
1 =[T(“d:/orders1.csv”), T(“d:/orders2.csv”)].merge@u() /对记录做并集
2 file(“d:/fast.btx”).export@b(A1) /写入集文件


btx体积小,读写速度快,可以像普通文本文件那样进行计算:


=T(“D:/fast.btx”).sort(Client,- Amount)


如果对btx进行有序存储,还能获得高计算性能,比如并行计算、二分查找。SPL还支持更高性能的ctx存储格式,支持压缩、列存、行存、分布式计算、大并发计算,适合持久存储大量数据,并进行高性能计算。


在数据库外的结构化数据计算方面,Stream做出了突破性的贡献;Kotlin加强了这种能力,但编译性语言的特性使它无法走得更远;要想彻底解决库外计算的难题,还需要SPL这种专业的结构化数据计算语言。



总结


如果这篇文章对您有所帮助,或者有所启发的话,求一键三连:点赞、转发、收藏,您的支持是我坚持写作最大的动力。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
1月前
|
SQL Java API
Stream&Kotlin 还能再进化成什么
Java 早期缺乏简洁的数据集运算语法,导致开发效率低下。Java 8 引入的 Stream API 和 Kotlin 在一定程度上改善了这一状况,但仍不及 SQL 简洁。 SPL 作为一种解释型动态语言,提供了比 SQL 更强大的结构化数据处理能力,支持丰富的计算函数和流程控制语句,代码简洁易维护,且可无缝集成到 Java 应用中,支持多种数据源,适用于复杂业务逻辑的开发。
|
SQL 存储 NoSQL
JVM 上数据处理语言的竞争:Kotlin, Scala 和 SPL
基于JVM的开源数据处理语言主要有Kotlin、Scala、SPL,下面对三者进行多方面的横向比较,从中找出开发效率最高的数据处理语言。本文的适用场景设定为项目开发中常见的数据处理和业务逻辑,以结构化数据为主,大数据和高性能不作为重点,也不涉及消息流、科学计算等特殊场景。......
227 0
JVM 上数据处理语言的竞争:Kotlin, Scala 和 SPL
|
SQL Java 数据处理
JVM 上数据处理语言的竞争:Kotlin, Scala 和 SPL
JVM 上数据处理语言的竞争:Kotlin, Scala 和 SPL
241 0
|
2月前
|
JSON 调度 数据库
Android面试之5个Kotlin深度面试题:协程、密封类和高阶函数
本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”或扫描文章底部二维码关注,和我一起每天进步一点点。文章详细解析了Kotlin中的协程、扩展函数、高阶函数、密封类及`inline`和`reified`关键字在Android开发中的应用,帮助读者更好地理解和使用这些特性。
38 1
|
3月前
|
Android开发 开发者 Kotlin
告别AsyncTask:一招教你用Kotlin协程重构Android应用,流畅度飙升的秘密武器
【9月更文挑战第13天】随着Android应用复杂度的增加,有效管理异步任务成为关键。Kotlin协程提供了一种优雅的并发操作处理方式,使异步编程更简单直观。本文通过具体示例介绍如何使用Kotlin协程优化Android应用性能,包括网络数据加载和UI更新。首先需在`build.gradle`中添加coroutines依赖。接着,通过定义挂起函数执行网络请求,并在`ViewModel`中使用`viewModelScope`启动协程,结合`Dispatchers.Main`更新UI,避免内存泄漏。使用协程不仅简化代码,还提升了程序健壮性。
105 1
|
4月前
|
调度 Android开发 开发者
【颠覆传统!】Kotlin协程魔法:解锁Android应用极速体验,带你领略多线程优化的无限魅力!
【8月更文挑战第12天】多线程对现代Android应用至关重要,能显著提升性能与体验。本文探讨Kotlin中的高效多线程实践。首先,理解主线程(UI线程)的角色,避免阻塞它。Kotlin协程作为轻量级线程,简化异步编程。示例展示了如何使用`kotlinx.coroutines`库创建协程,执行后台任务而不影响UI。此外,通过协程与Retrofit结合,实现了网络数据的异步加载,并安全地更新UI。协程不仅提高代码可读性,还能确保程序高效运行,不阻塞主线程,是构建高性能Android应用的关键。
66 4
|
5月前
|
安全 Android开发 Kotlin
Android经典面试题之Kotlin延迟初始化的by lazy和lateinit有什么区别?
**Kotlin中的`by lazy`和`lateinit`都是延迟初始化技术。`by lazy`用于只读属性,线程安全,首次访问时初始化;`lateinit`用于可变属性,需手动初始化,非线程安全。`by lazy`支持线程安全模式选择,而`lateinit`适用于构造函数后初始化。选择依赖于属性特性和使用场景。**
180 5
Android经典面试题之Kotlin延迟初始化的by lazy和lateinit有什么区别?
|
5月前
|
安全 Android开发 Kotlin
Android经典面试题之Kotlin中常见作用域函数
**Kotlin作用域函数概览**: `let`, `run`, `with`, `apply`, `also`. `let`安全调用并返回结果; `run`在上下文中执行代码并返回结果; `with`执行代码块,返回结果; `apply`配置对象后返回自身; `also`附加操作后返回自身
62 8
|
5月前
|
安全 Java Android开发
探索Android应用开发中的Kotlin语言
【7月更文挑战第19天】在移动应用开发的浩瀚宇宙中,Kotlin这颗新星以其简洁、安全与现代化的特性,正迅速在Android开发者之间获得青睐。从基本的语法结构到高级的编程技巧,本文将引导读者穿梭于Kotlin的世界,揭示其如何优化Android应用的开发流程并提升代码的可读性与维护性。我们将一起探究Kotlin的核心概念,包括它的数据类型、类和接口、可见性修饰符以及高阶函数等特性,并了解这些特性是如何在实际项目中得以应用的。无论你是刚入门的新手还是寻求进阶的开发者,这篇文章都将为你提供有价值的见解和实践指导。
|
5月前
|
SQL 安全 Java
Android经典面试题之Kotlin中object关键字实现的是什么类型的单例模式?原理是什么?怎么实现双重检验锁单例模式?
Kotlin 单例模式概览 在 Kotlin 中,`object` 关键字轻松实现单例,提供线程安全的“饿汉式”单例。例如: 要延迟初始化,可使用 `companion object` 和 `lazy` 委托: 对于参数化的线程安全单例,结合 `@Volatile` 和 `synchronized`
69 6