数据清洗与过滤

简介: 数据清洗与过滤

数据清洗与过滤是提升模型性能的关键步骤,尤其是在自然语言处理领域。以下是一些常见的数据清洗与过滤方法:

  1. 去除重复内容:删除文本中重复的句子或段落,因为重复内容可能会对模型训练产生负面影响。

  2. 语种识别与过滤:保留特定语言的文档,排除非目标语言的数据,确保数据集的一致性。

  3. 规则过滤:根据预设的规则来过滤数据,例如去除包含大量重复词、过长或过短的文档,以及符号、数字、URL等占比异常的文档。

  4. 文本长度标准化:确保文本长度符合模型输入要求,过长或过短的文本可能需要被截断或填充。

  5. 质量评估:使用语言模型对文本进行评分,低分的文本可能表示质量不高,可以予以排除。

  6. 基于机器学习的过滤:训练分类器识别高质量的数据,自动过滤掉低质量的文档。

  7. 去除停用词:停用词(如“的”、“和”、“是”等)通常不携带重要信息,可以从文本中去除。

  8. 拼写和语法检查:修正拼写错误和语法错误,提高数据质量。

  9. 内容审查:检查文本内容是否包含不当信息,如色情、暴力或仇恨言论,并进行相应的处理。

  10. 主题一致性:确保数据集内部的文本在主题和风格上保持一致性,避免模型学习到不相关或误导性的信息。

  11. 数据平衡:检查并平衡数据集中各类别或标签的分布,避免模型偏向某一类别。

  12. 数据增强:在数据稀缺的情况下,通过数据增强技术如同义词替换、句子重组等方法扩充数据集。

  13. 模糊匹配与去重:使用模糊匹配技术,如MinHash和LSH(局部敏感哈希),识别并删除重复或过于相似的文档。

  14. 数据标注和验证:对数据进行人工标注,并进行验证,确保数据的准确性和可靠性。

通过这些方法,可以有效地提高数据集的质量,从而提升模型的训练效果和最终性能。数据清洗与过滤是一个持续的过程,需要根据具体情况和需求进行调整和优化。

相关文章
|
数据采集 机器学习/深度学习 自然语言处理
数据清洗与过滤
数据清洗与过滤
|
文字识别 算法 API
阿里云文档解析(大模型版)优化
阿里云文档解析(大模型版
|
人工智能 安全 Linux
龙蜥社区首推 AI 原生操作系统路线,三大重磅计划协同生态布局未来
第二届龙蜥大会圆满落幕,龙蜥操作系统装机量突破800万。
|
机器学习/深度学习 数据采集 数据挖掘
深入Scikit-learn:掌握Python最强大的机器学习库
【7月更文第18天】在当今数据驱动的世界中,机器学习已成为解锁数据潜力的关键。Python凭借其简洁的语法和丰富的库生态,成为数据科学家和机器学习工程师的首选语言。而在Python的众多机器学习库中,Scikit-learn以其全面、高效、易用的特点,被誉为机器学习领域的“瑞士军刀”。本文旨在深入探讨Scikit-learn的核心概念、实用功能,并通过实战代码示例,带你领略其强大之处。
423 12
|
JSON Ubuntu Linux
Docker:镜像加速器
Docker:镜像加速器
21701 4
Docker:镜像加速器
|
存储 监控 安全
云服务的稳定性如何衡量?
【4月更文挑战第29天】云服务的稳定性如何衡量?
1112 3
|
存储 前端开发 JavaScript
新手也可以读懂的 React18 源码分析
打造全网最简单,新手也可以看懂的 React 18 源码分析系列。共同学习 React 设计思想,提升编码能力,轻松应对前端面试
479 0
新手也可以读懂的 React18 源码分析
|
人工智能 自然语言处理 NoSQL
Graph + LLM 实践指南|如何使用自然语言进行知识图谱构建和查询
经过悦数研发团队的努力和与国际多家知名大语言模型 LLM 技术团队的合作,目前悦数图数据库的产品已经可以实现基于 Graph + LLM 技术的 Text2Cypher,即自然语言生成图查询。用户只需要在对话界面中通过自然语言就可以轻松实现知识图谱的构建和查询,更有开箱即用的企业级服务,欢迎大家在文末点击试玩体验新一代的悦数图数据库 x 知识图谱应用吧!
|
Java 测试技术 容器
一篇文章解释清楚IOC和DI
一篇文章解释清楚IOC和DI