目标检测笔记(四):自适应缩放技术Letterbox完整代码和结果展示

简介: 自适应缩放技术Letterbox通过计算缩放比例并填充灰边像素,将图片调整为所需尺寸,保持原始比例不变,广泛应用于目标检测领域。

自适应缩放技术Letterbox介绍

由于数据集中存在多种不同和长宽比的样本图,传统的图片缩放方法按照固定尺寸来进行缩放会造成图片扭曲变形的问题。自适应缩放技术通过填充最少的灰边像素来将任意大小的图片调整为所需输入图片大小。

自适应缩放技术Letterbox流程

  1. 第一步:计算缩放比例。当原图的长宽不同时,将需要的尺寸大小除以原图的长宽,获得两种缩放比,选择较小的值作为缩放比例,因此图中选择的缩放比例为0.52。
  2. 第二步:分别计算缩放后的图像的长宽,原图的长宽分别乘以缩放比例,此时获得大小为 416×312。
  3. 第三步:计算填充的灰色像素。将需要的尺寸大小减去缩放后的短边大小,得到的值再采用 numpy 库中 np.mod 函数对 32 倍取余数的方式计算,然后通过平分得到对称两边需要填充的灰色像素。之所以用 32 取余,是因为 YOLOv5s 的网络需要对图像进行 5 次两倍下采样。

自适应缩放Letterbox代码

import numpy as np
import cv2

def letterbox(im, new_shape=(448, 448), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)
ori = cv2.imread(r"F:\python\object_detection\yolov7\test\2.jpg")
im, ratio, (dw, dh) = letterbox(im=ori)
cv2.imshow('ori', ori)
cv2.imshow('new_img_bbox', im)
cv2.imwrite("2.jpg", ori)
cv2.imwrite("3.jpg", im)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果

原图:
请添加图片描述
letterbox后
请添加图片描述

目录
相关文章
|
22天前
|
JavaScript
如何使用FabricJS为图像添加平滑处理?
平滑化可以给图像带来平滑的效果。
22 1
|
5月前
|
机器学习/深度学习 自动驾驶 机器人
【机器学习知识点】3. 目标检测任务中如何在图片上的目标位置绘制边界框
【机器学习知识点】3. 目标检测任务中如何在图片上的目标位置绘制边界框
|
1月前
|
机器学习/深度学习 计算机视觉 Python
目标检测笔记(三):Mosaic数据增强完整代码和结果展示
本文介绍了Mosaic数据增强技术,通过将四张图片拼接成一张新图,极大丰富了目标检测的背景信息。文章提供了完整的Python代码,涵盖了如何处理检测框并调整其位置,以适应拼接后的图像。Mosaic技术不仅提高了学习效率,还在标准化BN计算时同时考虑了四张图片的数据,从而提升了模型的泛化能力。
74 1
|
6月前
|
移动开发 前端开发 iOS开发
H5页面布局之图片液态化(自适应)处理简述
H5页面布局之图片液态化(自适应)处理简述
52 0
H5页面布局之图片液态化(自适应)处理简述
|
6月前
|
人工智能 文字识别 算法
垂直领域大模型——文档图像大模型的思考与探索
12月1日,2023中国图象图形学学会青年科学家会议在广州召开。超1400名研究人员齐聚一堂,进行学术交流与研讨,共同探索促进图象图形领域“产学研”交流合作。
|
6月前
|
机器学习/深度学习 计算机视觉 Python
【Python计算机视觉】项目实战之图像增强imguag对关键点变换、标注框变化(附源码 超详细必看)
【Python计算机视觉】项目实战之图像增强imguag对关键点变换、标注框变化(附源码 超详细必看)
193 0
|
编解码 人工智能 移动开发
AIGC图像分辨率太低?快来试试像素感知扩散超分模型,你想要的细节都在这里
阿里巴巴最新自研的像素感知扩散超分模型已经开源,它把扩散模型强大的生成能力和像素级控制能力相结合,能够适应从老照片修复到AIGC图像超分的各种图像增强任务和各种图像风格,并且能够控制生成强度和增强风格。这项技术的直接应用之一是AIGC图像的后处理增强和二次生成,能够带来可观的效果提升。
856 4
|
编解码
使用遮罩提取图像中感兴趣的区域
使用遮罩隔离感兴趣区域 (ROI) 来有效地处理被阻止的图像。 某些大图像源仅在图像的一小部分中具有有意义的数据。可以通过将处理限制为包含有意义数据的 ROI 来缩短总处理时间。使用掩码定义投资回报率。蒙版是一种逻辑图像,其中像素表示投资回报率。
126 1
|
自然语言处理 算法 测试技术
参数减半、与CLIP一样好,视觉Transformer从像素入手实现图像文本统一
参数减半、与CLIP一样好,视觉Transformer从像素入手实现图像文本统一
126 0
|
机器学习/深度学习 编解码 定位技术
风格迁移 图像合成 图像重构 更换姿态和图像背景(使用交叉注意控制进行提示到图像编辑)GAN网络增强版
风格迁移 图像合成 图像重构 更换姿态和图像背景(使用交叉注意控制进行提示到图像编辑)GAN网络增强版