【实操】数据扩增:Retinex算法用于图像颜色恢复和对比度增强

简介: 【实操】数据扩增:Retinex算法用于图像颜色恢复和对比度增强

前言

  随着深度学习技术的发展,数据扩增已经成为了训练高质量模型的重要步骤之一。然而,传统的数据扩增方法往往不能完全满足需求,因此,研究人员开始探索更加高效和有效的数据扩增方法。本文将介绍一种基于retinex算法的数据扩增方法,该方法可以在不影响图像内容的前提下,提高图像的亮度、对比度和颜色饱和度等方面的表现,从而提高模型的训练效果。

retinex

  基于视网膜理论公式:图像=反射率 * 亮度,我们需要的是估计亮度函数。该技术适用于高动态范围图像增强、水下图像增强、雾天图像增强和弱光图像增强。

在这里我们以下图作为原图进行图像变换:

image.png

retinex_FM实现

ini

复制代码

def retinex_FM(img,iter=4):
    if len(img.shape)==2:
        img=img[...,None]
    ret=np.zeros(img.shape,dtype='uint8')
    def update_OP(x,y):
        nonlocal OP
        IP=OP.copy()
        if x>0 and y==0:
            IP[:-x,:]=OP[x:,:]+R[:-x,:]-R[x:,:]
        if x==0 and y>0:
            IP[:,y:]=OP[:,:-y]+R[:,y:]-R[:,:-y]
        if x<0 and y==0:
            IP[-x:,:]=OP[:x,:]+R[-x:,:]-R[:x,:]
        if x==0 and y<0:
            IP[:,:y]=OP[:,-y:]+R[:,:y]-R[:,-y:]
        IP[IP>maximum]=maximum
        OP=(OP+IP)/2
    for i in range(img.shape[-1]):
        R=np.log(img[...,i].astype('double')+1)
        maximum=np.max(R)
        OP=maximum*np.ones(R.shape)
        S=2**(int(np.log2(np.min(R.shape))-1))
        while abs(S)>=1: #iterations is slow
            for k in range(iter):
                update_OP(S,0)
                update_OP(0,S)
            S=int(-S/2)
        OP=np.exp(OP)
        mmin=np.min(OP)
        mmax=np.max(OP)
        ret[...,i]=(OP-mmin)/(mmax-mmin)*255
    return ret.squeeze()

image.png

retinex_SSR实现

ini

复制代码

def retinex_SSR(img,sigma):
    
    if len(img.shape)==2:
        img=img[...,None]
    ret=np.zeros(img.shape,dtype='uint8')
    for i in range(img.shape[-1]):
        channel=img[...,i].astype('double')
        S_log=np.log(channel+1)
        gaussian=gauss_blur(channel,sigma)
        #gaussian=cv2.filter2D(channel,-1,get_gauss_kernel(sigma)) #conv may be slow if size too big
        #gaussian=cv2.GaussianBlur(channel,(0,0),sigma) #always slower
        L_log=np.log(gaussian+1)
        r=S_log-L_log
        R=r #R=np.exp(r)?
        mmin=np.min(R)
        mmax=np.max(R)
        stretch=(R-mmin)/(mmax-mmin)*255 #linear stretch
        ret[...,i]=stretch
    return ret.squeeze()

image.png

retinex_MSR实现

ini

复制代码

def retinex_MSR(img,sigmas=[15,80,250],weights=None):
    '''r=∑(log(S)-log(S*G))w, MSR combines various SSR with different(or same) weights, 
       commonly we select 3 scales(sigma) and equal weights, (15,80,250) is a good 
       choice. If len(sigmas)=1, equal to SSR
    args:
       sigmas: a list
       weights: None or a list, it represents the weight for each SSR, their sum should 
          be 1, if None, the weights will be [1/t, 1/t, ..., 1/t], t=len(sigmas)
    '''
    if weights==None:
        weights=np.ones(len(sigmas))/len(sigmas)
    elif not abs(sum(weights)-1)<0.00001:
        raise ValueError('sum of weights must be 1!')
    ret=np.zeros(img.shape,dtype='uint8')
    if len(img.shape)==2:
        img=img[...,None]
    for i in range(img.shape[-1]):
        channel=img[...,i].astype('double')
        r=np.zeros_like(channel)
        for k,sigma in enumerate(sigmas):
            r+=(np.log(channel+1)-np.log(gauss_blur(channel,sigma,)+1))*weights[k]
        mmin=np.min(r)
        mmax=np.max(r)
        stretch=(r-mmin)/(mmax-mmin)*255
        ret[...,i]=stretch
    return ret.squeeze()

image.png

retinex_gimp实现

ini

复制代码

def retinex_gimp(img,sigmas=[12,80,250],dynamic=2):
    alpha=128
    gain=1
    offset=0
    img=img.astype('double')+1 #
    csum_log=np.log(np.sum(img,axis=2))
    msr=MultiScaleRetinex(img-1,sigmas) #-1
    r=gain*(np.log(alpha*img)-csum_log[...,None])*msr+offset
    mean=np.mean(r,axis=(0,1),keepdims=True)
    var=np.sqrt(np.sum((r-mean)**2,axis=(0,1),keepdims=True)/r[...,0].size)
    mmin=mean-dynamic*var
    mmax=mean+dynamic*var
    stretch=(r-mmin)/(mmax-mmin)*255
    stretch[stretch>255]=255
    stretch[stretch<0]=0
    return stretch.astype('uint8')

image.png

retinex_MSRCR实现

ini

复制代码

def retinex_MSRCR(img,sigmas=[12,80,250],s1=0.01,s2=0.01):
    alpha=125
    img=img.astype('double')+1 #
    csum_log=np.log(np.sum(img,axis=2))
    msr=MultiScaleRetinex(img-1,sigmas) #-1
    r=(np.log(alpha*img)-csum_log[...,None])*msr
    #beta=46;G=192;b=-30;r=G*(beta*r-b) #deprecated
    #mmin,mmax=np.min(r),np.max(r)
    #stretch=(r-mmin)/(mmax-mmin)*255 #linear stretch is unsatisfactory
    for i in range(r.shape[-1]):
        r[...,i]=simplest_color_balance(r[...,i],0.01,0.01)
    return r.astype('uint8')

image.png

retinex_MSRCP算法

ini

复制代码

def retinex_MSRCP(img,sigmas=[12,80,250],s1=0.01,s2=0.01):
    Int=np.sum(img,axis=2)/3
    Diffs=[]
    for sigma in sigmas:
        Diffs.append(np.log(Int+1)-np.log(gauss_blur(Int,sigma)+1))
    MSR=sum(Diffs)/3
    Int1=simplest_color_balance(MSR,s1,s2)
    B=np.max(img,axis=2)
    A=np.min(np.stack((255/(B+eps),Int1/(Int+eps)),axis=2),axis=-1)
    return (A[...,None]*img).astype('uint8')

image.png

cv2_heq实现

ini

复制代码

def cv2_heq(img,yuv=False):
    if len(img.shape)==2:
        img=img[...,None]
    if yuv:
        img=cv2.cvtColor(img,cv2.COLOR_BGR2YCrCb)
    ret=img.copy()
    for i in range(img.shape[-1]):
        ret[...,i]=cv2.equalizeHist(img[...,i])
        if yuv:
            break
    if yuv:
        return cv2.cvtColor(ret,cv2.COLOR_YCrCb2BGR)
    return ret.squeeze()

image.png

retinex_AMSR算法

ini

复制代码

def retinex_AMSR(img,sigmas=[12,80,250]):
    img=img.astype('double')+1 #
    msr=MultiScaleRetinex(img-1,sigmas,flag=False) #
    y=0.05
    for i in range(msr.shape[-1]):
        v,c=np.unique((msr[...,i]*100).astype('int'),return_counts=True)
        sort_v_index=np.argsort(v)
        sort_v,sort_c=v[sort_v_index],c[sort_v_index] #plot hist
        zero_ind=np.where(sort_v==0)[0][0]
        zero_c=sort_c[zero_ind]
        #
        _=np.where(sort_c[:zero_ind]<=zero_c*y)[0]
        if len(_)==0:
            low_ind=0
        else:
            low_ind=_[-1]
        _=np.where(sort_c[zero_ind+1:]<=zero_c*y)[0]
        if len(_)==0:
            up_ind=len(sort_c)-1
        else:
            up_ind=_[0]+zero_ind+1
        #
        low_v,up_v=sort_v[[low_ind,up_ind]]/100 #low clip value and up clip value
        msr[...,i]=np.maximum(np.minimum(msr[:,:,i],up_v),low_v)
        mmin=np.min(msr[...,i])
        mmax=np.max(msr[...,i])
        msr[...,i]=(msr[...,i]-mmin)/(mmax-mmin)*255
    msr=msr.astype('uint8')
    return msr

image.png

结尾

  Retinex算法在数据扩增领域的应用是十分广泛的。通过对图像的处理,我们可以得到更加清晰、明亮、自然的图像,从而提升了机器学习模型的准确度和稳定性。而且,Retinex算法的优点在于可以针对不同的图像进行不同的处理,满足了数据扩增的个性化需求。因此,在进行图像数据扩增时,Retinex算法是一种十分有效的方法,值得我们深入研究和应用。


目录
打赏
0
0
0
0
181
分享
相关文章
联邦学习的未来:深入剖析FedAvg算法与数据不均衡的解决之道
随着数据隐私和数据安全法规的不断加强,传统的集中式机器学习方法受到越来越多的限制。为了在分布式数据场景中高效训练模型,同时保护用户数据隐私,联邦学习(Federated Learning, FL)应运而生。它允许多个参与方在本地数据上训练模型,并通过共享模型参数而非原始数据,实现协同建模。
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
61 12
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
|
27天前
|
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
25 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
基于Affine-Sift算法的图像配准matlab仿真
本项目展示了Affine-SIFT算法的运行效果(无水印),适用于图像配准任务,能够处理旋转、缩放、平移及仿射变换。程序基于MATLAB2022A开发,包含完整代码与操作视频。核心步骤为:先用SIFT提取特征点,再通过仿射变换实现高精度对准。
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
【狂热算法篇】解锁数据潜能:探秘前沿 LIS 算法
【狂热算法篇】解锁数据潜能:探秘前沿 LIS 算法
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等