二、数据了解与分析

简介: 二、数据了解与分析

数据探索与分析

一、导入必要的库

import warnings
warnings.filterwarnings('ignore')
# import missingno as msno
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plt 
import seaborn as sns
import numpy as np

二、读取训练与测试数据

Train_data = pd.read_csv('./train.csv')
Test_data = pd.read_csv('./testA.csv')

查看数据样式

Train_data.head().append(Train_data.tail
id heartbeat_signals label
0 0 0.9912297987616655,0.9435330436439665,0.764677... 0.0
1 1 0.9714822034884503,0.9289687459588268,0.572932... 0.0
2 2 1.0,0.9591487564065292,0.7013782792997189,0.23... 2.0
3 3 0.9757952826275774,0.9340884687738161,0.659636... 0.0
4 4 0.0,0.055816398940721094,0.26129357194994196,0... 2.0
99995 99995 1.0,0.677705342021188,0.22239242747868546,0.25... 0.0
99996 99996 0.9268571578157265,0.9063471198026871,0.636993... 2.0
99997 99997 0.9258351628306013,0.5873839035878395,0.633226... 3.0
99998 99998 1.0,0.9947621698382489,0.8297017704865509,0.45... 2.0
99999 99999 0.9259994004527861,0.916476635326053,0.4042900... 0.0
Train_data.shape
(100000, 3)
Test_data.head().append(Test_data.tail())
id heartbeat_signals
0 100000 0.9915713654170097,1.0,0.6318163407681274,0.13...
1 100001 0.6075533139615096,0.5417083883163654,0.340694...
2 100002 0.9752726292239277,0.6710965234906665,0.686758...
3 100003 0.9956348033996116,0.9170249621481004,0.521096...
4 100004 1.0,0.8879490481178918,0.745564725322326,0.531...
19995 119995 1.0,0.8330283177934747,0.6340472606311671,0.63...
19996 119996 1.0,0.8259705825857048,0.4521053488322387,0.08...
19997 119997 0.951744840752379,0.9162611283848351,0.6675251...
19998 119998 0.9276692903808186,0.6771898159607004,0.242906...
19999 119999 0.6653212231837624,0.527064114047737,0.5166625...
Test_data.shape
(20000, 2)

三、了解数据描述

Train_data.describe()
id label
count 100000.000000 100000.000000
mean 49999.500000 0.856960
std 28867.657797 1.217084
min 0.000000 0.000000
25% 24999.750000 0.000000
50% 49999.500000 0.000000
75% 74999.250000 2.000000
max 99999.000000 3.000000
Train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 3 columns):
id                   100000 non-null int64
heartbeat_signals    100000 non-null object
label                100000 non-null float64
dtypes: float64(1), int64(1), object(1)
memory usage: 2.3+ MB
Test_data.describe()
id
count 20000.000000
mean 109999.500000
std 5773.647028
min 100000.000000
25% 104999.750000
50% 109999.500000
75% 114999.250000
max 119999.000000
Test_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20000 entries, 0 to 19999
Data columns (total 2 columns):
id                   20000 non-null int64
heartbeat_signals    20000 non-null object
dtypes: int64(1), object(1)
memory usage: 312.6+ KB
Train_data.isnull().sum()
id                   0
heartbeat_signals    0
label                0
dtype: int64
Train_data['label'].value_counts()
0.0    64327
3.0    17912
2.0    14199
1.0     3562
Name: label, dtype: int64

四、画图探索数据

## 1) 总体分布概况(无界约翰逊分布等)
import scipy.stats as st
y = Train_data['label']
plt.figure(1); plt.title('Default')
sns.distplot(y, rug=True, bins=20)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)
<matplotlib.axes._subplots.AxesSubplot at 0x26849b6c448>

# 2)查看skewness and kurtosis
sns.distplot(Train_data['label']);
print("Skewness: %f" % Train_data['label'].skew())
print("Kurtosis: %f" % Train_data['label'].kurt())
Skewness: 0.871005
Kurtosis: -1.009573

Train_data.skew(), Train_data.kurt()
(id       0.000000
 label    0.871005
 dtype: float64, id      -1.200000
 label   -1.009573
 dtype: float64)
sns.distplot(Train_data.kurt(),color='orange',axlabel ='Kurtness')
<matplotlib.axes._subplots.AxesSubplot at 0x2684ad75bc8>

## 3) 查看预测值的具体频数
plt.hist(Train_data['label'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()

五、生成数据分析报告

import pandas_profiling
pfr = pandas_profiling.ProfileReport(Train_data)
pfr.to_file("./example.html")
相关文章
|
4月前
|
存储 缓存 Java
分析fastcache和freecache(一)
分析fastcache和freecache(一)
71 5
|
12月前
queryCoord的checkerController分析
queryCoord的checkerController分析
541 0
|
数据可视化 数据挖掘 索引
分析你的数据
分析你的数据
86 0
|
SQL
【MySQLprofiling分析
【MySQLprofiling分析
104 0
【MySQLprofiling分析
|
定位技术 Android开发
BottomSheetBehavior分析
BottomSheetBehavior分析
BottomSheetBehavior分析
|
供应链 数据挖掘
场景分析
如何梳理业务流程、建立指标体系?
734 0
场景分析
|
Python 算法 计算机视觉
多因子探索分析
假设检验 检验统计量,根据数据的均值、方差等性质,将数据转换为一个函数,构造这个函数的目的是将这个数据转换为一个已知分布容易解决的格式 显著性水平一般用希腊字母a表示,0.05代表数据有95%的可能与已知分布一致。
1403 0
下一篇
无影云桌面