数据探索与分析
一、导入必要的库
import warnings warnings.filterwarnings('ignore') # import missingno as msno import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt import seaborn as sns import numpy as np
二、读取训练与测试数据
Train_data = pd.read_csv('./train.csv')
Test_data = pd.read_csv('./testA.csv')
查看数据样式
Train_data.head().append(Train_data.tail
id | heartbeat_signals | label | |
0 | 0 | 0.9912297987616655,0.9435330436439665,0.764677... | 0.0 |
1 | 1 | 0.9714822034884503,0.9289687459588268,0.572932... | 0.0 |
2 | 2 | 1.0,0.9591487564065292,0.7013782792997189,0.23... | 2.0 |
3 | 3 | 0.9757952826275774,0.9340884687738161,0.659636... | 0.0 |
4 | 4 | 0.0,0.055816398940721094,0.26129357194994196,0... | 2.0 |
99995 | 99995 | 1.0,0.677705342021188,0.22239242747868546,0.25... | 0.0 |
99996 | 99996 | 0.9268571578157265,0.9063471198026871,0.636993... | 2.0 |
99997 | 99997 | 0.9258351628306013,0.5873839035878395,0.633226... | 3.0 |
99998 | 99998 | 1.0,0.9947621698382489,0.8297017704865509,0.45... | 2.0 |
99999 | 99999 | 0.9259994004527861,0.916476635326053,0.4042900... | 0.0 |
Train_data.shape
(100000, 3)
Test_data.head().append(Test_data.tail())
id | heartbeat_signals | |
0 | 100000 | 0.9915713654170097,1.0,0.6318163407681274,0.13... |
1 | 100001 | 0.6075533139615096,0.5417083883163654,0.340694... |
2 | 100002 | 0.9752726292239277,0.6710965234906665,0.686758... |
3 | 100003 | 0.9956348033996116,0.9170249621481004,0.521096... |
4 | 100004 | 1.0,0.8879490481178918,0.745564725322326,0.531... |
19995 | 119995 | 1.0,0.8330283177934747,0.6340472606311671,0.63... |
19996 | 119996 | 1.0,0.8259705825857048,0.4521053488322387,0.08... |
19997 | 119997 | 0.951744840752379,0.9162611283848351,0.6675251... |
19998 | 119998 | 0.9276692903808186,0.6771898159607004,0.242906... |
19999 | 119999 | 0.6653212231837624,0.527064114047737,0.5166625... |
Test_data.shape
(20000, 2)
三、了解数据描述
Train_data.describe()
id | label | |
count | 100000.000000 | 100000.000000 |
mean | 49999.500000 | 0.856960 |
std | 28867.657797 | 1.217084 |
min | 0.000000 | 0.000000 |
25% | 24999.750000 | 0.000000 |
50% | 49999.500000 | 0.000000 |
75% | 74999.250000 | 2.000000 |
max | 99999.000000 | 3.000000 |
Train_data.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 100000 entries, 0 to 99999 Data columns (total 3 columns): id 100000 non-null int64 heartbeat_signals 100000 non-null object label 100000 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 2.3+ MB
Test_data.describe()
id | |
count | 20000.000000 |
mean | 109999.500000 |
std | 5773.647028 |
min | 100000.000000 |
25% | 104999.750000 |
50% | 109999.500000 |
75% | 114999.250000 |
max | 119999.000000 |
Test_data.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 20000 entries, 0 to 19999 Data columns (total 2 columns): id 20000 non-null int64 heartbeat_signals 20000 non-null object dtypes: int64(1), object(1) memory usage: 312.6+ KB
Train_data.isnull().sum()
id 0 heartbeat_signals 0 label 0 dtype: int64
Train_data['label'].value_counts()
0.0 64327 3.0 17912 2.0 14199 1.0 3562 Name: label, dtype: int64
四、画图探索数据
## 1) 总体分布概况(无界约翰逊分布等) import scipy.stats as st y = Train_data['label'] plt.figure(1); plt.title('Default') sns.distplot(y, rug=True, bins=20) plt.figure(2); plt.title('Normal') sns.distplot(y, kde=False, fit=st.norm) plt.figure(3); plt.title('Log Normal') sns.distplot(y, kde=False, fit=st.lognorm)
<matplotlib.axes._subplots.AxesSubplot at 0x26849b6c448>
# 2)查看skewness and kurtosis sns.distplot(Train_data['label']); print("Skewness: %f" % Train_data['label'].skew()) print("Kurtosis: %f" % Train_data['label'].kurt())
Skewness: 0.871005 Kurtosis: -1.009573
Train_data.skew(), Train_data.kurt()
(id 0.000000 label 0.871005 dtype: float64, id -1.200000 label -1.009573 dtype: float64)
sns.distplot(Train_data.kurt(),color='orange',axlabel ='Kurtness')
<matplotlib.axes._subplots.AxesSubplot at 0x2684ad75bc8>
## 3) 查看预测值的具体频数 plt.hist(Train_data['label'], orientation = 'vertical',histtype = 'bar', color ='red') plt.show()
五、生成数据分析报告
import pandas_profiling
pfr = pandas_profiling.ProfileReport(Train_data) pfr.to_file("./example.html")