机器学习入门(四):距离度量方法 归一化和标准化

简介: 机器学习入门(四):距离度量方法 归一化和标准化

1. 距离的度量方法

1.1 机器学习中为什么要度量距离?

机器学习算法中,经常需要 判断两个样本之间是否相似 ,比如KNN,K-means,推荐算法中的协同过滤等等,常用的套路是 将相似的判断转换成距离的计算 ,距离近的样本相似程度高,距离远的相似程度低。所以度量距离是很多算法中的关键步骤。

KNN算法中要求数据的所有特征都用数值表示。若在数据特征中存在非数值类型,必须采用手段将其进行量化为数值。

  • 比如样本特征中包含有颜色(红、绿、蓝)一项,颜色之间没有距离可言,可通过将颜色转化为 灰度值来实现距离计算
  • 每个特征都用数值表示,样本之间就可以计算出彼此的距离来

接下来介绍几种距离度量方法

1.2 欧式距离

1.3 曼哈顿距离

1.4 切比雪夫距离(了解)

国际象棋棋盘上二个位置间的切比雪夫距离是指王要从一个位置移至另一个位置需要走的步数。(王可以往斜前或斜后方向移动一格)

1.5 闵式距离

闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

其中p是一个变参数:

  • 当 p=1 时,就是曼哈顿距离;
  • 当 p=2 时,就是欧氏距离;
  • 当 p→∞ 时,就是切比雪夫距离。

根据 p 的不同,闵氏距离可以表示某一类/种的距离。

1.6 小结

  1. 欧式距离、曼哈顿距离、切比雪夫距离是最常用的距离
  2. 闵式距离是一组距离的度量,当 p = 1 时代表曼哈顿距离,当 p = 2 时代表欧式距离,当 p = ∞ 时代表切比雪夫距离

2. 归一化和标准化

2.1 为什么做归一化和标准化

样本中有多个特征,每一个特征都有自己的定义域和取值范围,他们对距离计算也是不同的,如取值较大的影响力会盖过取值较小的参数。因此,为了公平,样本参数必须做一些归一化处理,将不同的特征都缩放到相同的区间或者分布内。

2.2 归一化

通过对原始数据进行变换,把数据映射到(默认为[0,1])之间。

scikit-learn 中实现归一化的 API:

from sklearn.preprocessing import MinMaxScaler

def test():
    # 1. 准备数据
    data = [[90, 2, 10, 40],
            [60, 4, 15, 45],
            [75, 3, 13, 46]]
    # 2. 初始化归一化对象
    transformer = MinMaxScaler()
    # 3. 对原始特征进行变换
    data = transformer.fit_transform(data)
    # 4. 打印归一化后的结果
    print(data)

归一化受到最大值与最小值的影响,这种方法容易受到异常数据的影响, 鲁棒性较差,适合传统精确小数据场景

2.3 标准化

  • mean 为特征的平均值
  • σ 为特征的标准差

scikit-learn 中实现标准化的 API:

from sklearn.preprocessing import StandardScaler

def test():
    # 1. 准备数据
    data = [[90, 2, 10, 40],
            [60, 4, 15, 45],
            [75, 3, 13, 46]]
    # 2. 初始化标准化对象
    transformer = StandardScaler()
    # 3. 对原始特征进行变换
    data = transformer.fit_transform(data)
    # 4. 打印归一化后的结果
    print(data)

对于标准化来说,如果出现异常点,由于具有一定数据量,少量的异常点对于平均值的影响并不大

2.4 小结

  1. 归一化和标准化都能够将量纲不同的数据集缩放到相同范围内
  2. 归一化受到最大值与最小值的影响,这种方法容易受到异常数据的影响, 鲁棒性较差,适合传统精确小数据场景
  3. 对于标准化来说,如果出现异常点,由于具有一定数据量,少量的异常点对于平均值的影响并不大,鲁棒性更好
相关文章
|
5月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
446 8
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
470 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1425 6
|
机器学习/深度学习 数据采集 算法
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
本文围绕 Java 大数据机器学习模型在金融衍生品定价中的应用展开,分析定价现状与挑战,阐述技术原理与应用,结合真实案例与代码给出实操方案,助力提升金融衍生品定价的准确性与效率。
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
2308 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
806 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
526 6
|
4月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
9月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
596 8

热门文章

最新文章