解密 Python 如何调用 Rust 编译生成的动态链接库(二)

简介: 解密 Python 如何调用 Rust 编译生成的动态链接库(二)

接上篇:https://developer.aliyun.com/article/1617449?spm=a2c6h.13148508.setting.14.72964f0eZeRnl9


给函数传递指针



如果扩展函数里面接收的是指针,那么 Python 要怎么传递呢?

#[no_mangle]
pub extern "C" fn add(a: *mut i32, b: *mut i32) -> i32 {
    // 定义为 *mut,那么可以修改指针指向的值,定义为 *const,则不能修改
    if a.is_null() || b.is_null() {
        0
    } else {
        let res = unsafe {
            *a + *b
        };
        unsafe {
            // 这里将 *a 和 *b 给改掉
            *a = 666;
            *b = 777;
        }
        res
    }
}

定义了一个 add 函数,接收两个 i32 指针,返回解引用后相加的结果。但是在返回之前,我们将 *a 和 *b 的值也修改了。

from ctypes import *
py_lib = CDLL("../py_lib/target/debug/libpy_lib.dylib")
a = c_int(22)
b = c_int(33)
# 计算
print(py_lib.add(pointer(a), pointer(b)))  # 55
# 我们看到 a 和 b 也被修改了
print(a, a.value)  # c_int(666) 666
print(b, b.value)  # c_int(777) 777

非常简单,那么问题来了,能不能返回一个指针呢?答案是当然可以,只不过存在一些注意事项。

由于 Rust 本身的内存安全原则,直接从函数返回一个指向本地局部变量的指针是不安全的。因为该变量的作用域仅限于函数本身,一旦函数返回,该变量的内存就会被回收,从而出现悬空指针。

为了避免这种情况出现,我们应该在堆上分配内存,但这又出现了之前 CString 的问题。Python 在拿到值之后,堆内存依旧驻留在堆区。因此 Rust 如果想返回指针,那么同时还要定义一个释放函数。

#[no_mangle]
pub extern "C" fn add(a: *const i32, b: *const i32) -> *mut i32 {
    // 返回值的类型是 *mut i32,所以 res 不能直接返回,因此它是 i32
    let res = unsafe {*a + *b};
    // 创建智能指针(将 res 装箱),然后返回原始指针
    Box::into_raw(Box::new(res))
}
#[no_mangle]
pub extern "C" fn free_i32(ptr: *mut i32) {
    if !ptr.is_null() {
        // 转成 Box<i32>,同时拿到所有权,在离开作用域时释放堆内存
        unsafe { let _ = Box::from_raw(ptr); }
    }
}

然后 Python 进行调用:

from ctypes import *
py_lib = CDLL("../py_lib/target/debug/libpy_lib.dylib")
a, b = c_int(22), c_int(33)
# 指定类型为 c_void_p
py_lib.add.restype = c_void_p
# 拿到指针保存的地址
ptr = py_lib.add(pointer(a), pointer(b))
# 将 c_void_p 转成 POINTER(c_int) 类型,也就是 c_int *
# 通过它的 contents 属性拿到具体的值
print(cast(ptr, POINTER(c_int)).contents)  # c_int(55)
print(cast(ptr, POINTER(c_int)).contents.value)  # 55
# 释放堆内存
py_lib.free_i32(c_void_p(ptr))

这样我们就拿到了指针,并且也不会出现内存泄露。但是单独定义一个释放函数还是有些麻烦的,所以 Rust 自动提供了一个 free 函数,专门用于释放堆内存。举个例子:

use std::ffi::{CStr, CString};
use std::os::raw::c_char;
#[no_mangle]
pub extern "C" fn to_uppercase(s: *const c_char) -> *mut c_char {
    let s = unsafe {
        CStr::from_ptr(s)
    };
    let s = s.to_str().unwrap().to_uppercase();
    CString::new(s).unwrap().into_raw()
}
#[no_mangle]
pub extern "C" fn add(a: *const i32, b: *const i32) -> *mut i32 {
    let res = unsafe {*a + *b};
    Box::into_raw(Box::new(res))
}

这是出现过的两个函数,它们的内存都申请在堆区,但我们将内存释放函数删掉了,因为 Rust 自动提供了一个 free 函数,专门用于堆内存的释放。

from ctypes import *
py_lib = CDLL("../py_lib/target/debug/libpy_lib.dylib")
# 返回值类型指定为 c_void_p,表示万能指针
py_lib.to_uppercase.restype = c_void_p
py_lib.add.restype = c_void_p
ptr1 = py_lib.to_uppercase(
    c_char_p("Serpen 老师".encode("utf-8"))
)
ptr2 = py_lib.add(
    pointer(c_int(123)), pointer(c_int(456))
)
# 函数调用完毕,将地址转成具体的类型的指针
print(cast(ptr1, c_char_p).value.decode("utf-8"))
"""
SERPEN 老师
"""
print(cast(ptr2, POINTER(c_int)).contents.value)
"""
579
"""
# 释放堆内存,直接调用 free 函数即可,非常方便
py_lib.free(c_void_p(ptr1))
py_lib.free(c_void_p(ptr2))

以上我们就实现了指针的传递和返回,但对于整数、浮点数而言,直接返回它们的值即可,没必要返回指针。


传递数组



下面来看看如何传递数组,由于数组在作为参数传递的时候会退化为指针,所以数组的长度信息就丢失了,使用 sizeof 计算出来的结果就是一个指针的大小。因此将数组作为参数传递的时候,应该将当前数组的长度信息也传递过去,否则可能会访问非法的内存。

我们实现一个功能,Rust 接收一个 Python 数组,进行原地排序。

use std::slice;
#[no_mangle]
pub extern "C" fn sort_array(arr: *mut i32, len: usize) {
    assert!(!arr.is_null());
    unsafe {
        // 得到一个切片 &mut[i32]
        let slice = slice::from_raw_parts_mut(arr, len);
        slice.sort();  // 排序
    }
}

然后 Python 进行调用:

from ctypes import *
py_lib = CDLL("../py_lib/target/debug/libpy_lib.dylib")
# 一个列表
data = [3, 2, 1, 5, 4, 7, 6]
# 但是列表不能传递,必须要转成 C 数组
# Array_Type 就相当于 C 的 int array[len(data)]
Array_Type = c_int * len(data)
# 创建数组
array = Array_Type(*data)
print(list(array))  # [3, 2, 1, 5, 4, 7, 6]
py_lib.sort_array(array, len(array))
print(list(array))  # [1, 2, 3, 4, 5, 6, 7]

排序实现完成,这里的数组是 Python 传过去的,并且进行了原地修改。那 Rust 可不可以返回数组给 Python 呢?从理论上来说可以,但实际不建议这么做,因为你不知道返回的数组的长度是多少?

如果你真的想返回数组的话,那么可以将数组拼接成字符串,然后返回。

use std::ffi::{c_char, CString};
#[no_mangle]
pub extern "C" fn create_array() -> *mut c_char {
    // 筛选出 1 到 50 中,能被 3 整除的数
    // 并以逗号为分隔符,将这些整数拼接成字符串
    let vec = (1..=50)
        .filter(|c| *c % 3 == 0)
        .map(|c| c.to_string())
        .collect::<Vec<String>>()
        .join(",");
    CString::new(vec).unwrap().into_raw()
}

编译之后交给 Python 调用。

from ctypes import *
py_lib = CDLL("../py_lib/target/debug/libpy_lib.dylib")
# 只要是需要释放的堆内存,都建议按照 c_void_p 来解析
py_lib.create_array.restype = c_void_p
# 此时拿到的就是指针保存的地址,在 Python 里面就是一串整数
ptr = py_lib.create_array()
# 由于是字符串首字符的地址,所以转成 char *,拿到具体内容
print(cast(ptr, c_char_p).value.decode("utf-8"))
"""
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48
"""
# 此时我们就将数组拼接成字符串返回了
# 但是堆区的 CString 还在,所以还要释放掉,调用 free 函数即可
# 注意:ptr 只是一串整数,或者说它就是 Python 的一个 int 对象
# 换句话说 ptr 只是保存了地址值,但它不具备指针的含义
# 因此需要再使用 c_void_p 包装一下(转成指针),才能传给 free 函数
py_lib.free(c_void_p(ptr))

因此虽然不建议返回数组,但将数组转成字符串返回也不失为一个办法,当然除了数组,你还可以将更复杂的结构转成字符串返回


传递结构体



结构体应该是 Rust 里面最重要的结构之一了,它要如何和外部交互呢?

use std::ffi::c_char;
#[repr(C)]
pub struct Girl {
    pub name: *mut c_char,
    pub age: u8,
}
#[no_mangle]
pub extern "C" fn create_struct(name: *mut c_char, age: u8) -> Girl {
    Girl { name, age }
}

因为结构体实例要返回给外部,所以它的字段类型必须是兼容的,不能定义 C 理解不了的类型。然后还要设置 #[repr(C)] 属性,来保证结构体的内存布局和 C 是兼容的。

下面通过 cargo build 命令编译成动态库,Python 负责调用。

from ctypes import *
py_lib = CDLL("../py_lib/target/debug/libpy_lib.dylib")
class Girl(Structure):
    _fields_ = [
        ("name", c_char_p),
        ("age", c_uint8),
    ]
# 指定 create_struct 的返回值类型为 Girl
py_lib.create_struct.restype = Girl
girl = py_lib.create_struct(
    c_char_p("S 老师".encode("utf-8")),
    c_uint8(18)
)
print(girl.name.decode("utf-8"))  # S 老师
print(girl.age)  # 18

调用成功,并且此时是没有内存泄露的。

当通过 FFI 将数据从 Rust 传递到 Python 时,如果传递的是指针,那么会涉及内存释放的问题。但如果传递的是值,那么它会复制一份给 Python,而原始的值(这里是结构体实例)会被自动销毁,所以无需担心。

然后是结构体内部的字段,虽然里面的 name 字段是 *mut c_char,但它的值是由 Python 传过来的,而不是在 Rust 内部创建的,因此没有问题。

但如果将 Rust 代码改一下:

use std::ffi::{c_char, CString};
#[repr(C)]
pub struct Girl {
    pub name: *mut c_char,
    pub age: u8,
}
#[no_mangle]
pub extern "C" fn create_struct() -> Girl {
    let name = CString::new("S 老师").unwrap().into_raw();
    let age = 18;
    Girl { name, age }
}

这时就尴尬了,此时的字符串是 Rust 里面创建的,转成原始指针之后,Rust 将不再管理相应的堆内存(因为 into_raw 将所有权转移走了),此时就需要手动堆内存了。

from ctypes import *
py_lib = CDLL("../py_lib/target/debug/libpy_lib.dylib")
class Girl(Structure):
    _fields_ = [
        ("name", c_char_p),
        ("age", c_uint8),
    ]
# 指定 create_struct 的返回值类型为 Girl
py_lib.create_struct.restype = Girl
girl = py_lib.create_struct()
print(girl.name.decode("utf-8"))  # S 老师
print(girl.age)  # 18
# 直接传递 girl 即可,会释放 girl 里面的字段在堆区的内存
py_lib.free(girl)

此时就不会出现内存泄露了,在 free 的时候,将变量 girl 传进去,释放掉内部字段占用的堆内存。

当然,Rust 也可以返回结构体指针,通过 Box 实现。

#[no_mangle]
pub extern "C" fn create_struct() -> *mut Girl {
    let name = CString::new("S 老师").unwrap().into_raw();
    let age = 18;
    Box::into_raw(Box::new(Girl { name, age }))
}

注意:之前是 name 字段在堆上,但结构体实例在栈上,现在 name 字段和结构体实例都在堆上。

然后 Python 调用也很简单,关键是释放的问题。

from ctypes import *
py_lib = CDLL("../py_lib/target/debug/libpy_lib.dylib")
class Girl(Structure):
    _fields_ = [
        ("name", c_char_p),
        ("age", c_uint8),
    ]
# 此时返回值类型就变成了 c_void_p
# 当返回指针时,建议将返回值设置为 c_void_p
py_lib.create_struct.restype = c_void_p
# 拿到指针(一串整数)
ptr = py_lib.create_struct()
# 将指针转成指定的类型,而类型显然是 POINTER(Girl)
# 调用 POINTER(T) 的 contents 方法,拿到相应的结构体实例
girl = cast(ptr, POINTER(Girl)).contents
# 访问具体内容
print(girl.name.decode("utf-8"))  # S 老师
print(girl.age)  # 18
# 释放堆内存,这里的释放分为两步,并且顺序不能错
# 先 free(girl),释放掉内部字段(name)占用的堆内存
# 然后 free(c_void_p(ptr)),释放掉结构体实例 girl 占用的堆内存
py_lib.free(girl)
py_lib.free(c_void_p(ptr))

不难理解,只是在释放结构体实例的时候需要多留意,如果内部有字段占用堆内存,那么需要先将这些字段释放掉。而释放的方式是将结构体实例作为参数传给 free 函数,然后再传入 c_void_p 释放结构体实例。


回调函数



最后看一下 Python 如何传递函数给 Rust,因为 Python 和 Rust 之间使用的是 C ABI,所以函数必须遵循 C 的标准。

// calc 接收三个参数,前两个参数是 *const i32
// 最后一个参数是函数,它接收两个 *const i32,返回一个 i32
#[no_mangle]
pub extern "C" fn calc(
    a: *const i32, b: *const i32,
    op: extern "C" fn(*const i32, *const i32) -> i32
) -> i32
{
    op(a, b)
}

然后看看 Python 如何传递回调函数。

from ctypes import *
py_lib = CDLL("../py_lib/target/debug/libpy_lib.dylib")
# 基于 Python 函数创建 C 函数,通过 @CFUNCTYPE() 进行装饰
# CFUNCTYPE 第一个参数是返回值类型,剩余的参数是参数类型
@CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
def add(a, b):  # a、b 为 int *,通过 .contents.value 拿到具体的值
    return a.contents.value + b.contents.value
@CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
def sub(a, b):
    return a.contents.value - b.contents.value
@CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
def mul(a, b):
    return a.contents.value * b.contents.value
@CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
def div(a, b):
    return a.contents.value // b.contents.value
a = pointer(c_int(10))
b = pointer(c_int(2))
print(py_lib.calc(a, b, add))  # 12
print(py_lib.calc(a, b, sub))  # 8
print(py_lib.calc(a, b, mul))  # 20
print(py_lib.calc(a, b, div))  # 5

成功实现了向 Rust 传递回调函数,当然例子举得有点刻意了,比如参数类型指定为 i32 即可,没有必要使用指针。


小结



以上我们就介绍了 Python 如何调用 Rust 编译的动态库,再次强调一下,通过 ctypes 调用动态库是最方便、最简单的方式。它和 Python 的版本无关,也不涉及底层的 C 扩展,它只是将 Rust 编译成 C ABI 兼容的动态库,然后交给 Python 进行调用。

因此这也侧面要求,函数的参数和返回值的类型应该是 C 可以表示的类型,比如 Rust 函数不能返回一个 trait 对象。总之在调用动态库的时候,库函数内部的逻辑可以很复杂,但是参数和返回值最好要简单。

如果你发现 Python 代码存在大量的 CPU 密集型计算,并且不怎么涉及复杂的 Python 数据结构,那么不妨将这些计算交给 Rust。

以上就是本文的内容,后续有空我们介绍如何用 Rust 的 PyO3 来为 Python 编写扩展。PyO3 的定位类似于 Cython,用它来写扩展非常的方便,后续有机会我们详细聊一聊。

相关文章
|
24天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
13天前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
20天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
53 4
|
20天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
30 2
|
19天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
9天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
15天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
15天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
15天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
2天前
|
Python
Python编程入门:从零开始的代码旅程
本文是一篇针对Python编程初学者的入门指南,将介绍Python的基本语法、数据类型、控制结构以及函数等概念。文章旨在帮助读者快速掌握Python编程的基础知识,并能够编写简单的Python程序。通过本文的学习,读者将能够理解Python代码的基本结构和逻辑,为进一步深入学习打下坚实的基础。