【高阶数据结构】深度探索二叉树进阶:二叉搜索树概念及其高效实现(三)

简介: 【高阶数据结构】深度探索二叉树进阶:二叉搜索树概念及其高效实现

【高阶数据结构】深度探索二叉树进阶:二叉搜索树概念及其高效实现(二)https://developer.aliyun.com/article/1617405


六、Binary_Search_Tree.h

#pragma once
#include <string>
template<class K>
    struct  BSTreeNode
    {
        BSTreeNode(const K& key = K())
            :_left(nullptr)
                , _right(nullptr)
                , _key(key)
            {}
        BSTreeNode<K>* _left;
        BSTreeNode<K>* _right;
        K _key;
    };
template<class K>
    class  BSTree
    {
        public:
        typedef BSTreeNode<K> Node;
        //插入操作
        bool Insert(const K& key)
        {
            if (_root == nullptr)
            {
                _root = new Node(key);
                return true;
            }
            Node* parent = nullptr;
            Node* cur = _root;
            while (cur)
            {
                if (cur->_key < key)
                {
                    parent = cur;
                    cur = cur->_right;
                }
                else if (cur->_key > key)
                {
                    parent = cur;
                    cur = cur->_left;
                }
                else
                {
                    return false;
                }
            }
            cur = new Node(key);
            if (parent->_key < key)
            {
                parent->_right = cur;
            }
            else if (parent->_key > key)
            {
                parent->_left = cur;
            }
            return true;
        }
        bool Erase(const K& key)
        {
            Node* parent = nullptr;
            Node* cur = _root;
            while (cur)
            {
                if (cur->_key < key)
                {
                    parent = cur;
                    cur = cur->_right;
                }
                else if (cur->_key > key)
                {
                    parent = cur;
                    cur = cur->_left;
                }
                else
                {
                    //找到位置
                    //删除
                    //先判断谁为空
                    if (cur->_left == nullptr)
                    {
                        if (cur == _root)
                        {
                            _root = cur->_right;
                        }
                        else
                        {
                            if (parent->_left == cur)
                            {
                                parent->_left = cur->_right;
                            }
                            else if (parent->_right == cur)
                            {
                                parent->_right = cur->_right;
                            }
                        }
                        delete cur;
                    }
                    else if (cur->_right == nullptr)
                    {
                        if (cur == _root)
                        {
                            _root = cur->_right;
                        }
                        else
                        {
                            if (parent->_left == cur)
                            {
                                parent->_right = cur->_left;
                            }
                            else if (parent->_right == cur)
                            {
                                parent->_left = cur->_left;
                            }
                        }
                        delete cur;
                    }
                    //替换法实现
                    else
                    {
                        Node* RightMinParent = cur;
                        Node* RightMin = cur->_right;
                        //找到右子树最大的值
                        while (RightMin->_left)
                        {
                            RightMinParent = RightMin;
                            RightMin = RightMin->_left;
                        }
                        //找到
                        swap(cur->_key, RightMin->_key);
                        if (RightMinParent->_left == RightMin)
                        {
                            RightMinParent->_left = RightMin->_right;
                        }
                        else
                        {
                            RightMinParent->_right = RightMin->_right;
                        }
                        delete RightMin;
                    }
                    return true;
                }
            }
            return false;
        }
        bool Find(const K& key)
        {
            Node* cur = _root;
            while (cur)
            {
                if (cur->_key < key)
                {
                    cur = cur->_right;
                }
                else if (cur->_key > key)
                {
                    cur = cur->_left;
                }
                else
                {
                    return false;
                }
            }
            return true;
        }
        void InOrder()
        {
            _InOrder(_root);
            cout << endl;
        }
        private:
        void _InOrder(Node* root)
        {
            if (root == nullptr)
            {
                return;
            }
            _InOrder(root->_left);
            cout << root->_key << " ";
            _InOrder(root->_right);
        }
        private:
        Node* _root = nullptr;
    };

感谢大家的观看!以上就是本篇文章的全部内容。我是店小二,希望这些高阶数据结构笔记能为你在学习旅途中提供帮助!

相关文章
|
3月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
92 9
 算法系列之数据结构-二叉树
|
3月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
101 22
|
3月前
|
C语言 C++ 容器
【数据结构】二叉搜索树(二叉排序树)
本文介绍了二叉搜索树(Binary Search Tree, BST)的定义、实现及其性能分析。二叉搜索树是一种特殊的二叉树,其特点是左子树所有节点值小于根节点值,右子树所有节点值大于根节点值,且每个子树也满足此特性。文中详细讲解了BST的节点结构、插入、查找、删除等操作的实现,并通过C++代码展示了这些功能。此外,还讨论了BST的性能:在理想情况下,时间复杂度接近O(logN),但在最坏情况下可能退化为O(N)。为了提高效率,后续将学习自平衡二叉搜索树如AVL树和红黑树。掌握BST有助于理解STL中的set和map容器。感谢阅读,欢迎点赞支持。
234 9
|
5月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
136 12
|
5月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
136 10
|
5月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
189 2
|
6月前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
7月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
219 4
|
9天前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
栈区的非法访问导致的死循环(x64)
|
7月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
171 58