Python量化择时的技术指标函数

简介: Python量化择时的技术指标函数

Python量化择时的技术指标函数
技术指标通过对原始数据(开盘价、收盘价、最低价、最高价、成交量、成交金额、成交笔数)的处理,来反映出市场的某一方面深层的内涵,这些内涵是很难通过原始数据直接看出来的。技术指标能客观地反映某些既成过去的事实,将某些市场的数据形象化、直观化,将某些分析理论数量化和精细化。

量化择时概述
量化择时是指利用数量化的方法,通过各种技术分析的量化分析,找到自选股中的股票的买点和卖点时机。在各种技术分析中,技术指标是非常重要的量化分析手段,也是最常用的量化分析工具。

目前,应用于股市的技术指标有几百种,按照不同的计算原理和反映状况,可大致分4类,分别是趋向指标、压力支撑指标和量价指标。如下图所示:

image.png

趋向指标(Trend Indicators):
趋向指标是用来显示市场趋势方向和强度的技术指标。常见的趋向指标包括移动平均线(如简单移动平均线和指数移动平均线)和趋势线(如斜率趋势线和通道趋势线)。趋向指标可以帮助交易者识别市场的上升、下降或横盘趋势。

反趋向指标(Oscillators):
反趋向指标是用来辅助判断市场超买和超卖状态的技术指标。典型的反趋向指标包括相对强弱指数(RSI)、随机指标(Stochastic Oscillator)和平均真实区间指数(Average True Range, ATR)。这些指标可帮助投资者确定何时市场可能过热或过冷,从而作出更明智的交易决策。

压力支撑指标(Support and Resistance Indicators):
压力支撑指标是用来标识股价可能会遇到阻力或支撑的水平的技术指标。这些指标包括移动平均线、布林带(Bollinger Bands)、波动率通道等。支撑线代表价格下跌受到支持的水平,而阻力线则表示价格上涨受到阻碍的水平。

量价指标(Volume-Price Indicators):
量价指标是通过比较交易量和价格的变化来帮助投资者评估市场情绪和趋势的指标。典型的量价指标包括成交量指标、积极成交量指标(Accumulation/Distribution Line)、相对量力指数(On-Balance Volume, OBV)等。这些指标能够提供有关市场参与者活动水平的信息,有助于确认价格走势的可靠性。

这些技术指标在股市中被广泛使用,但需要注意,技术指标的单独使用可能并不总是有效的,应结合其他分析方法和市场情况进行综合考虑。

趋向指标函数
趋向指标是投资者最容易在市场中获利的方法,也是股票、期货、外汇市场中最为著名的格言“让利润充分增长、限制损失”的真实反映。

MACD指标函数
MACD指标,即平滑异同平均线。在Python量化炒股策略中,平滑异同平均线MACD的语法格式如下:

MACD(security_list, check_date, SHORT=12, LONG=26,MID=9)

各参数意义如下:

security_list:股票列表,可以是一只股票,也可是多只股票

check_date:要查询数据的日期

SHORT:统计的天数SHORT

LONG:统计的天数LONG

MID:统计的天数MID

返回DIF、DEA和MACD的值,返回类型为字典(dict),键(key)为股票代码,值(value)为数据。

平滑异同平均线MACD用法具体如下:

第一,DIFF、DEA均为正,DIFF向上突破DEA,买入信号

第二,DIFF、DEA均为负,DIFF向下跌破DEA,卖出信号

第三,DEA线与K线发生 背离,行情反转信号

第四,分析MACD柱状线,由红变绿(正变负),卖出信号;由绿变红,买入信号

单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = '002465.XSHE'
# 计算并输出security_list1的MACD值
macd_diff, macd_dea, macd_macd = MACD(security_list1, check_date='2024-04-26', SHORT=12, LONG=26,MID=9)
print('海格通信的MACD指标的DIFF值:', macd_diff[security_list1])
print('海格通信的MACD指标的DEA值:',macd_dea[security_list1])
print('海格通信的MACD指标的MACD值:', macd_macd[security_list1])

首先导入technical_analysis库,这样才可以使用函数MACD()。在这里定义计算的股票为海格通信,接着就调用函数MACD(),获得DIF、DEA和MACD的值,最后利用print()函数显示。

单击工具栏中的运行按钮,快捷键(shift+enter),运行结果如下图所示:
image.png

利用函数MACD()获得DIF、DEA和MACD的值后,就可以量化择时,进行股票的买卖操作。例如,DIFF、DEA均为正,DIFF向上突破D EA,买入信号,转为Python代码如下:

macd_diff[security_list1] > 0
macd_dea[security_list1] > 0
macd_diff[security_list1] > macd_dea[security_list1]

DIFF、DEA均为负,DIFF向下跌破DEA,卖出信号,转为Python代码如下:

macd_diff[security_list1] < 0
macd_dea[security_list1] < 0
macd_diff[security_list1] < macd_dea[security_list1]

EMV指标函数
EMV指标,即简易波动指标。在Python量化炒股策略中,简易波动指标EMV的语法格式如下:

EMV(security_list, check_date, N = 14, M = 9)

其中,security_list和check_date参数与MACD指标相同。

参数N和M表示统计的天数N和统计的天数M。

返回EMV和MAEMV的值,返回类型也与MACD指标相同。简易波动指标EMV用法具体如下:

第一,EMV由下往上穿越0轴时,视为中期买进信号。

第二,EMV由上往下穿越0轴时,视为中期卖出信号。

第三,EMV的平均线穿越0轴,产生假信号的机会较少。

需要注意的是,须长期使用EMV指标才能获得最佳利润。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台。然后单击“新建”按钮,创建Python3文件,输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = ['000001.XSHE', '000002.XSHE', '601211.XSHG', '603177.XSHG']
# 计算并输出 security_list1的EMV值
EMV1,MAEMV1 = EMV(security_list1, check_date='2024-04-26', N=14, M=9)
for stock in security_list1:
    print(EMV1[stock])
    print(MAEMV1[stock])

注意:这里显示多只股票的EMV指标的参数值,要使用for循环语句显示

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:
image.png

UOS指标函数
UOS指标,即终极指标。其语法格式如下:

UOS(security_list, check_date, N1=7, N2=14,N3=28,M=6)

其中, security_list和check_date参数与MACD指标相同。

参数N1、N2、N3和M分别表示统计的天数N1、N2、N3以及统计的天数M。返回终极指标和MAUOS的值,返回类型也与MACD指标相同。终极指标UOS用法具体如下:

第一,UOS上升至50~70之间,而后向下跌破其N字曲线低点时,为短线卖点。

第二,UOS上升超过70,而后向下跌破70时,为中线卖点。

第三,UOS下跌至45以下,而后向上突破其N字曲线高点时,为短信买点。

第四,UOS下跌至35以下,产生一底比一底高的背离现象时,为底部特征。

单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = '002465.XSHE'
# 计算并输出security_list1的UOS值
uos_ultiInc, uos_mauos = UOS(security_list1, check_date='2024-04-26', N1=7, N2=14, N3=28,M=6)
print('海格通信的终极指标UOS的终极指标值:',uos_ultiInc[security_list1])
print('海格通信的终极目标UOS的MAUOS的值:', uos_mauos[security_list1])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

image.png

GDX指标函数
GDX指标,即鬼道线,语法格式如下:

GDX(security_list, check_date, N=30,M=9)

其中,security_list和check_date参数与MACD指标相同。

参数N和M分别表示统计的天数N和统计的天数M

返回济安线、压力线和支撑线的值,返回类型也与MACD指标相同。

鬼道线指标GDX,是一种用技术手段和经验判断来决定买卖股票的方法。该公式对趋势线做了平滑和修正处理,更精确地反映了股价运行规律。

当股价上升到压力线时,投资者就卖出股票。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = '002465.XSHE'
security_list2 = ['002465.XSHE', '002540.XSHE', '600108.XSHG']
# 计算并输出security_list1的GDX值
gdx_jax, gdx_ylx, gdx_zcx = GDX(security_list1, check_date='2024-04-26', N=30, M=9)
print('海格通信的济安线的值:', gdx_jax[security_list1])
print('海格通信的压力线的值:',gdx_ylx[security_list1])
print('海格通信的支撑线的值:', gdx_zcx[security_list1])

# 输出security_list2的GDX值
gdx_jax, gdx_ylx, gdx_zcx = GDX(security_list2, check_date='2024-04-26', N=30, M=9)
print('\n\n海格通信、亚太科技、亚盛集团的济安线、压力线和支撑线的值:\n')
for stock in security_list2:
    print(gdx_jax[stock])
    print(gdx_ylx[stock])
    print(gdx_zcx[stock])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:
image.png


JS指标函数

JS指标,即加速线。其语法格式如下:

JS(security_list, check_date, N=5, M1=5,M2=10,M3=20)

其中,security_list和check_date参数与MACD指标相同。

参数N1、M1、M2和M3表示统计的天数。返回JS、MAJS1、MAJS2和MAJS3的值,返回类型也与MACD指标相同。

加速线指标是衡量股价涨速的工具,加速线指标上升表明股价上升动力增加,加速线指标下降表明股价下降压力增加。

加速线适用于DMI表明趋势明显时(DMI.ADX大于20)使用:

第一、如果加速线在0值附近形成平台,则表明既不是最好的买入时机也不是最好的卖出时机;

第二,在加速线发生金叉后,均线形成底部是买入时机。

第三,在加速线发生死叉后,均线形成顶部是卖出时机。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

#导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = ['002465.XSHE', '002540.XSHE', '600108.XSHG']
# 输出security_list2的JS值
js_jsx, js_majsx1, js_majsx2, js_majsx3 = JS(security_list1, check_date='2024-04-26', N=5,M1=5,M2=10,M3=20)
for stock in security_list1:
    print(js_jsx[stock])
    print(js_majsx1[stock])
    print(js_majsx2[stock])
    print(js_majsx3[stock])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

image.png

MA指标函数
MA指标,即均线,其语法格式如下:

MA(security_list, check_date, timeperiod=5)

其中,security_list和check_date参数与MACD指标相同。

参数timeperiod表示统计的天数。返回MA的值,返回类型也与MACD指标相同。

均线MA指标用法具体如下:

第一,股价高于平均线,视为强势;股价低于平均线,视为弱势;

第二,平均线向上涨升,具有助涨力道;平均线向下跌降,具有助跌力道;

第三,2条以上平均线向上交叉时,买进;

第四,2条以上平均线向下交叉时,卖出;

第五,移动平均线的信号经常落后股价,若以EXPMA、VMA辅助,可以改善。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表
security_list1 = '002465.XSHE'
# 计算并输出security_list1的MA值
MA1 = MA(security_list1, check_date='2024-04-26', timeperiod=5)
MA2 = MA(security_list1, check_date='2024-04-26', timeperiod=10)
MA3 = MA(security_list1, check_date='2024-04-26', timeperiod=30)
print('海格通信的5日均线:', MA1[security_list1])
print('海格通信的10日均线:', MA2[security_list1])
print('海格通信的30日均线:', MA3[security_list1])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:
image.png

EXPMA的指标函数
EXPMA指标,即指数平均线。其语法格式如下:

EXPMA(security_list, check_date,timeperiod=12)

其中,security_list和check_date参数与MACD指标相同。

参数timeperiod表示统计的天数。返回EXPMA的值,返回类型也与MACD指标相同。

指数平均线EXPMA指标用法具体如下:

第一,EXPMA一般以观察12日和50日2条均线为主。

第二,12日指数平均线向上交叉50日指数平均线时,买进;

第三,12日指数平均线向下交叉50日指数平均线时,卖出。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
security_list1 = ['002465.XSHE', '002540.XSHE', '601108.XSHG']
# 输出security_list2的EXPMA值
EXPMA1 = EXPMA(security_list1, check_date='2024-04-26', timeperiod=12)
for stock in security_list1:
    print(EXPMA1[stock])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

image.png

VMA指标函数
VMA指标,即变异平均线,语法格式如下:

VMA(security_list, check_date, timeperiod=12)

其中,security_list和check_date参数与MACD指标相同。

参数time period,表示统计的天数。返回VMA的值,返回类型也与MACD指标相同。

变异平均线VMA指标用法具体如下:

第一,股价高于平均线,视为强势;股价低于平均线,视为弱势。

第二,平均线向上涨升,具有助涨力道;平均线向下跌降,具有助跌力道

第三,2条以上平均线向上交叉时,买进。

第四,2条以上平均线向下交叉时,卖出。

当股价下跌到支撑线时,投资者就进行相应的补进。单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令,进入Jupyter Notebook的研究平台,然后单击“新建”按钮,创建Python3文件,接着输入如下代码:

# 导入technical_analysis库
from jqlib.technical_analysis import *
# 定义股票池列表,调用get_concept_stocks函数,获取风力发电概念板块的成分股
security_list1 = get_concept_stocks('SC0034')
# 输出security_list1的12日变异平均线值
VMA1 = VMA(security_list1, check_date='2024-04-26', timeperiod=12)
for stock in security_list1:
    print(VMA1[stock])

单击工具栏运行按钮,快捷键(shift+enter),运行结果如下图:

image.png

相关文章
|
28天前
|
Python
【python从入门到精通】-- 第五战:函数大总结
【python从入门到精通】-- 第五战:函数大总结
61 0
|
25天前
|
Python
Python之函数详解
【10月更文挑战第12天】
Python之函数详解
|
26天前
|
存储 数据安全/隐私保护 索引
|
16天前
|
测试技术 数据安全/隐私保护 Python
探索Python中的装饰器:简化和增强你的函数
【10月更文挑战第24天】在Python编程的海洋中,装饰器是那把可以令你的代码更简洁、更强大的魔法棒。它们不仅能够扩展函数的功能,还能保持代码的整洁性。本文将带你深入了解装饰器的概念、实现方式以及如何通过它们来提升你的代码质量。让我们一起揭开装饰器的神秘面纱,学习如何用它们来打造更加优雅和高效的代码。
|
18天前
|
弹性计算 安全 数据处理
Python高手秘籍:列表推导式与Lambda函数的高效应用
列表推导式和Lambda函数是Python中强大的工具。列表推导式允许在一行代码中生成新列表,而Lambda函数则是用于简单操作的匿名函数。通过示例展示了如何使用这些工具进行数据处理和功能实现,包括生成偶数平方、展平二维列表、按长度排序单词等。这些工具在Python编程中具有高度的灵活性和实用性。
|
20天前
|
Python
python的时间操作time-函数介绍
【10月更文挑战第19天】 python模块time的函数使用介绍和使用。
25 4
|
22天前
|
存储 Python
[oeasy]python038_ range函数_大小写字母的起止范围_start_stop
本文介绍了Python中`range`函数的使用方法及其在生成大小写字母序号范围时的应用。通过示例展示了如何利用`range`和`for`循环输出指定范围内的数字,重点讲解了小写和大写字母对应的ASCII码值范围,并解释了`range`函数的参数(start, stop)以及为何不包括stop值的原因。最后,文章留下了关于为何`range`不包含stop值的问题,留待下一次讨论。
17 1
|
28天前
|
索引 Python
Python中的其他内置函数有哪些
【10月更文挑战第12天】Python中的其他内置函数有哪些
14 1
|
22天前
|
安全 数据处理 数据安全/隐私保护
python中mod函数怎么用
通过这些实例,我们不仅掌握了Python中 `%`运算符的基础用法,还领略了它在解决实际问题中的灵活性和实用性。在诸如云计算服务提供商的技术栈中,类似的数学运算逻辑常被应用于数据处理、安全加密等关键领域,凸显了基础运算符在复杂系统中的不可或缺性。
16 0
|
28天前
|
开发者 索引 Python
Python中有哪些内置函数
【10月更文挑战第12天】Python中有哪些内置函数
17 0