python3 协程实战(python3经典编程案例)

简介: 该文章通过多个实战案例介绍了如何在Python3中使用协程来提高I/O密集型应用的性能,利用asyncio库以及async/await语法来编写高效的异步代码。

一. 定义协程

协程是轻量级线程,拥有自己的寄存机上下文和栈。
协程调度切换时,将寄存器上下文和栈保存到其他地方,再切回来时,恢复先前保存的寄存器上下文和栈。

协程的应用场景:I/O密集型任务,和多线程类似,但协程调用时在一个线程内进行的,是单线程,切换的开销小,因此,效率上略高于多线程。

python3.4加入了协程,以生成器对象为基础,python3.5加了async/await,使用协程更加方便。

python中使用协程最方便的库是asyncio,引入该库才能使用async和await关键字

  • async: 定义一个协程;async定义的方法无法直接执行,必须注册到时间循环中才能执行。
  • await: 用于临时挂起一个函数或方法的执行。

根据官方文档,await后面的对象必须是如下类型之一:

  • 一个原生的coroutine对象;
  • 一个由types.coroutine()修饰的生成器,这个生成器可以返回coroutine对象;
  • 一个包含await方法的对象返回的一个迭代器。

案例1:

import asyncio
import time


async def task():
    print(f"{time.strftime('%H:%M:%S')} task 开始 ")
    time.sleep(2)
    print(f"{time.strftime('%H:%M:%S')} task 结束")


coroutine = task()
print(f"{time.strftime('%H:%M:%S')} 产生协程对象 {coroutine},函数并未被调用")
loop = asyncio.get_event_loop()
print(f"{time.strftime('%H:%M:%S')} 开始调用协程任务")
start = time.time()
loop.run_until_complete(coroutine)
end = time.time()
print(f"{time.strftime('%H:%M:%S')} 结束调用协程任务, 耗时{end - start} 秒")

案例2:
为任务绑定回调函数

import asyncio
import time


async def _task():
    print(f"{time.strftime('%H:%M:%S')} task 开始 ")
    time.sleep(2)
    print(f"{time.strftime('%H:%M:%S')} task 结束")
    return "运行结束"


def callback(task):
    print(f"{time.strftime('%H:%M:%S')} 回调函数开始运行")
    print(f"状态:{task.result()}")


coroutine = _task()
print(f"{time.strftime('%H:%M:%S')} 产生协程对象 {coroutine},函数并未被调用")
task = asyncio.ensure_future(coroutine)  # 返回task对象
task.add_done_callback(callback)  # 为task增加一个回调任务
loop = asyncio.get_event_loop()
print(f"{time.strftime('%H:%M:%S')} 开始调用协程任务")
start = time.time()
loop.run_until_complete(task)
end = time.time()
print(f"{time.strftime('%H:%M:%S')} 结束调用协程任务, 耗时{end - start} 秒")

二. 并发

如果需要执行多次协程任务并尽可能的提高效率,这时可以定义一个task列表,然后使用asyncio的wait()方法执行即可。

import asyncio
import time


async def task():
    print(f"{time.strftime('%H:%M:%S')} task 开始 ")
    # 异步调用asyncio.sleep(1):
    await asyncio.sleep(2)
    # time.sleep(2)
    print(f"{time.strftime('%H:%M:%S')} task 结束" )

# 获取EventLoop:
loop = asyncio.get_event_loop()
# 执行coroutine
tasks = [task() for _ in range(5)]
start = time.time()
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
end = time.time()
print(f"用时 {end-start} 秒")

三. 异步请求

先启动一个简单的web服务器

from flask import Flask
import time

app = Flask(__name__)


@app.route('/')
def index():
    time.sleep(3)
    return 'Hello World!'


if __name__ == '__main__':
    app.run(threaded=True)

案例1:请求串行走下来,没有实现挂起。

import asyncio
import requests
import time

start = time.time()


async def request():
    url = 'http://127.0.0.1:5000'
    print(f'{time.strftime("%H:%M:%S")} 请求 {url}')
    response = requests.get(url)
    print(f'{time.strftime("%H:%M:%S")} 得到响应 {response.text}')

tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()
print(f'耗时 {end - start} 秒')

使用await将耗时等待的操作挂起,让出控制权。
当协程执行时遇到await, 时间循环就会将本协程挂起,转而去执行别的协程,知道其他的协程挂起或者执行完毕。

案例2:异步IO请求实例
将请求页面的代码封装成一个coroutine对象,在requests中尝试使用await挂起当前执行的I/O.

import asyncio
import requests
import time


async def get(url):
    return requests.get(url)


async def request():
    url = "http://127.0.0.1:5000"
    print(f'{time.strftime("%H:%M:%S")} 请求 {url}')
    response = await get(url)
    print(f'{time.strftime("%H:%M:%S")} 得到响应 {response.text}')


start = time.time()
tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
end = time.time()
print(f"耗时 {end - start} 秒")

上面的带动并未达到预期的并发效果。原因是requests不是异步请求,无论如何改封装都无济于事,因此需要找真正的IO请求,aiohttp是一个支持异步请求的库,可以用它和anyncio配合,实现异步请求操作。
案例3:使用aiohttp库

import asyncio
import aiohttp
import time

now = lambda: time.strftime("%H:%M:%S")


async def get(url):
    session = aiohttp.ClientSession()
    response = await session.get(url)
    result = await response.text()
    await session.close()
    return result


async def request():
    url = "http://127.0.0.1:5000"
    print(f"{now()} 请求 {url}")
    result = await get(url)
    print(f"{now()} 得到响应 {result}")


start = time.time()
tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()
print(f"耗时 { end - start } 秒")

运行结果符合预期要求,耗时由15秒变成了3秒,实现了并发访问。

将任务数5改成100,运行时间也在3秒多一点,多出来的时间就是I/O时延了。
可见,使用异步协程之后,几乎可以在相同时间内实现成百上千次的网络请求。

相关文章
|
1天前
|
设计模式 程序员 数据处理
编程之旅:探索Python中的装饰器
【10月更文挑战第34天】在编程的海洋中,Python这艘航船以其简洁优雅著称。其中,装饰器作为一项高级特性,如同船上的风帆,让代码更加灵活和强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一起感受编程之美。
|
1天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
10 1
|
1天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
14 2
|
6月前
|
数据采集 JSON JavaScript
Python爬虫案例:抓取猫眼电影排行榜
python爬取猫眼电影排行榜数据分析,实战。(正则表达式,xpath,beautifulsoup)【2月更文挑战第11天】
255 2
Python爬虫案例:抓取猫眼电影排行榜
|
1月前
|
数据采集 前端开发 NoSQL
Python编程异步爬虫实战案例
Python编程异步爬虫实战案例
|
5月前
|
数据采集 前端开发 Java
Python简单爬虫案例
用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。
|
5月前
|
数据采集 前端开发 Java
Python简单爬虫案例
用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。
|
6月前
|
数据采集 Web App开发 Java
Python 爬虫:Spring Boot 反爬虫的成功案例
Python 爬虫:Spring Boot 反爬虫的成功案例
|
6月前
|
Web App开发 数据采集 前端开发
Python Selenium 爬虫淘宝案例
本文基于Selenium + MongoDB + ChromeDriver + Pyquery实现爬虫淘宝案例。【2月更文挑战第11天】
306 1
Python Selenium 爬虫淘宝案例
|
6月前
|
数据采集 Python
简单的Python爬虫案例
这个简单的爬虫案例将访问目标网站,获取其HTML内容,然后解析HTML并提取所有的标题。
82 5