大发现!谷歌证明反学习,无法让大模型删除不良信息

简介: 【9月更文挑战第19天】最近,Ilia Shumailov等人发表的论文《UnUnlearning:反学习在大语言模型中的内容监管不足》在人工智能领域引发了热议。该论文探讨了反学习在大型语言模型中的应用,指出反学习虽能有效控制训练阶段的数据撤回,但在推理阶段仍可能执行非法行为,引入了“反反学习”的概念。这一发现对内容监管产生重要影响,但也引发了关于反学习有效性的争议。详细内容与讨论可见论文原文:https://arxiv.org/abs/2407.00106

最近,一篇名为《UnUnlearning:反学习在大语言模型中的内容监管不足》的论文在人工智能领域引起了广泛关注。这篇论文由Ilia Shumailov等人撰写,主要研究了反学习(Unlearning)在大型语言模型(LLMs)中的应用。

反学习是一种隐私机制,最初被引入以允许用户在请求时从机器学习模型中撤回他们的数据。然而,由于实际成本的问题,后来提出了不精确的方案来缓解精确反学习的不切实际性。最近,反学习经常被讨论为一种去除非法知识的方法,即模型不应该拥有的知识,如未经许可的版权内容、不准确或恶意的信息。

然而,这篇论文指出,反学习在大型语言模型中的应用存在一个基本的不一致性,即反学习可以有效地控制训练阶段,但不能防止模型在推理阶段执行非法行为。论文中引入了一个名为“反反学习”(UnUnlearning)的概念,其中被反学习的知识在上下文中重新引入,有效地使模型能够表现得好像它知道被遗忘的知识。

这一发现对内容监管有着重要的影响。论文作者认为,即使使用精确的反学习方案,内容过滤对于非法知识也是必要的,因为反学习不能完全防止模型在推理阶段执行非法行为。

然而,这一发现也引发了一些争议。一些人认为,反学习仍然是一种有用的工具,可以帮助保护用户的隐私和数据安全。他们认为,尽管反学习不能完全防止模型执行非法行为,但它仍然可以减少这种行为的可能性。

另一方面,一些人对反学习的有效性提出了质疑。他们认为,反学习可能只是一种治标不治本的方法,不能从根本上解决问题。他们主张,应该寻找其他方法来解决模型中的非法行为问题,如改进模型的训练数据或使用其他技术来控制模型的行为。

论文地址:https://arxiv.org/abs/2407.00106

目录
相关文章
|
人工智能 自然语言处理 大数据
“后土”启动!自然资源部信息中心与阿里云联合研发大模型
“后土”启动!自然资源部信息中心与阿里云联合研发大模型
1441 0
|
7月前
|
人工智能 安全 Cloud Native
龙蜥社区衍生版浪潮信息 KOS 升级!支持最新 5.10 内核,让大模型“开箱即用”
社区衍生版KeyarchOS产品升级,实现了大模型应用的“开箱即用”。
|
1月前
|
存储 数据采集 自然语言处理
使用大模型时,该如何避免虚假信息的生成和使用?
使用大模型时,该如何避免虚假信息的生成和使用?
43 1
|
2月前
|
人工智能 前端开发 JavaScript
拿下奇怪的前端报错(一):报错信息是一个看不懂的数字数组Buffer(475) [Uint8Array],让AI大模型帮忙解析
本文介绍了前端开发中遇到的奇怪报错问题,特别是当错误信息不明确时的处理方法。作者分享了自己通过还原代码、试错等方式解决问题的经验,并以一个Vue3+TypeScript项目的构建失败为例,详细解析了如何从错误信息中定位问题,最终通过解读错误信息中的ASCII码找到了具体的错误文件。文章强调了基础知识的重要性,并鼓励读者遇到类似问题时不要慌张,耐心分析。
|
7月前
|
自然语言处理 安全 算法
23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
160 0
23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
|
人工智能 算法 安全
理想自研认知大模型、无图城市NOA信息曝光,纯电MEGA定价50万以上
理想自研认知大模型、无图城市NOA信息曝光,纯电MEGA定价50万以上
227 0
|
机器学习/深度学习 人工智能 自然语言处理
浪潮信息分享:新型算法基础设施大模型的知识蒸馏技术介绍 | 第 60 期
今天(周三)了解大模型发展现状和大模型基础知识,交流大模型在产业应用中起到的作用和 AI 服务新态势。
浪潮信息分享:新型算法基础设施大模型的知识蒸馏技术介绍 | 第 60 期
|
2月前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
170 2
|
1月前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
114 2
|
2月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
85 2