CMU清华教LLM练成数学高手,LeanSTaR训练模型边思考边证明,登顶新SOTA

简介: 【9月更文挑战第2天】卡内基梅隆大学与清华大学的研究团队开发出名为LeanSTaR的语言模型,该模型结合形式化验证与机器学习技术,在数学证明上取得了重大突破,实现了类似人类数学家的思考和证明能力。这一成果不仅提升了数学证明任务的性能,尤其在复杂推理方面表现突出,还为数学研究和教育提供了有力支持。论文详细内容可访问 https://arxiv.org/abs/2407.10040。

近期,卡内基梅隆大学(CMU)和清华大学的研究人员在人工智能领域取得了一项重要突破,他们成功训练了一个语言大模型(LLM),使其能够像人类数学家一样进行思考和证明。这项研究成果名为LeanSTaR,它通过结合形式化验证和机器学习技术,在数学证明任务上取得了新的SOTA(State-of-the-Art)成绩。

LeanSTaR的创新之处在于它将形式化验证和机器学习技术相结合,从而实现了LLM在数学证明任务上的突破。形式化验证是一种数学方法,用于验证软件或硬件系统的正确性。而机器学习技术则可以帮助模型从大量的数据中学习和提取知识。

在LeanSTaR中,研究人员首先使用形式化验证技术将数学定理转化为逻辑表达式,然后使用机器学习技术训练LLM来理解和处理这些逻辑表达式。通过这种方式,LeanSTaR能够像人类数学家一样进行思考和证明,从而在数学证明任务上取得了出色的表现。

为了评估LeanSTaR的性能,研究人员在多个数学证明数据集上进行了实验。结果显示,LeanSTaR在大多数数据集上都取得了显著的性能提升,尤其是在那些需要复杂推理和证明技巧的任务上。

此外,研究人员还对LeanSTaR进行了定性分析,以了解它在解决数学问题时的思考过程。结果发现,LeanSTaR能够生成清晰、准确的证明过程,并且能够处理一些人类数学家都难以解决的问题。

LeanSTaR的成功不仅在学术上具有重要意义,而且在实际应用中也具有广阔的前景。例如,它可以用于辅助数学家进行定理证明,提高数学研究的效率和准确性。此外,它还可以用于教育领域,帮助学生更好地理解和掌握数学知识。

然而,LeanSTaR也面临一些挑战。首先,它的训练和推理过程相对复杂,需要大量的计算资源和时间。其次,它目前还只能处理一些特定的数学问题,对于更广泛的数学领域还缺乏泛化能力。最后,它还存在一些技术上的局限性,如对逻辑表达式的理解还不够深入等。

论文地址:https://arxiv.org/abs/2407.10040

目录
相关文章
|
7月前
|
机器学习/深度学习 人工智能 缓存
英伟达提出全新Star Attention,10倍加速LLM推理!登顶Hugging Face论文榜
英伟达推出的Star Attention技术,旨在解决Transformer模型在长序列推理中的高计算成本与速度瓶颈问题。通过两阶段块稀疏近似方法,第一阶段利用块局部注意力并行处理上下文信息,第二阶段通过全局注意力机制交互查询与缓存令牌,从而显著提升计算效率并减少通信开销。该技术可无缝集成到现有LLM中,将内存需求和推理时间降低多达11倍,同时保持高准确性。然而,其在极长序列处理中可能面临内存限制,并增加模型复杂性。尽管如此,Star Attention为长序列推理提供了创新解决方案,推动了Transformer模型的实际应用潜力。
141 19
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第17天】近日,谷歌、DeepMind等四大机构联合发布论文,展示大型语言模型(LLMs)在数学问题解决上的显著进步。通过引入元认知知识,研究人员开发了提示引导的交互程序,使LLMs能为数学问题分配合理技能标签并进行语义聚类。实验结果显示,GPT-4在GSM8K和MATH数据集上的准确性分别提升了11.6%和7.52%,展现出巨大潜力。这一成果不仅为AI领域提供了新思路,也为数学教育带来了启示。
146 4
|
12月前
|
机器学习/深度学习 自然语言处理 测试技术
CoT神话破灭,并非LLM标配!三大学府机构联手证实,CoT仅在数学符号推理有用
【10月更文挑战第17天】链式思维(CoT)曾被认为是大型语言模型(LLM)激发推理能力的关键方法,但最新研究显示,CoT仅在数学和符号推理任务中有效,其他任务中效果不明显。加州大学伯克利分校、斯坦福大学和卡内基梅隆大学的联合研究打破了CoT作为LLM标配的神话,为重新评估LLM的推理能力提供了新视角。
239 1
|
7月前
|
边缘计算 人工智能 算法
LLM最大能力密度100天翻一倍!清华刘知远团队提出Densing Law
大型语言模型(LLMs)的快速发展显著提升了性能,但也带来了计算与能耗挑战。清华大学刘知远团队提出“能力密度”概念,定义为有效参数规模与实际参数规模的比值,揭示LLMs能力密度每100天翻倍的“Densing Law”。这一发现提供评估模型效率与性能的新视角,推动LLMs向更高效、可持续方向发展,同时降低部署成本,拓展应用场景。然而,Densing Law的普适性及多因素影响仍需进一步研究,未来需克服技术挑战以实现更高效率的模型设计与优化。
189 30
|
8月前
|
机器学习/深度学习 人工智能 测试技术
仅7B的模型数学推理能力完虐70B?MIT哈佛推出行动思维链COAT让LLM实现自我反思并探索新策略
Satori 是由 MIT 和哈佛大学等机构联合推出的 7B 参数大型语言模型,专注于提升推理能力,具备强大的自回归搜索和自我纠错功能。
255 6
仅7B的模型数学推理能力完虐70B?MIT哈佛推出行动思维链COAT让LLM实现自我反思并探索新策略
|
8月前
|
人工智能 自然语言处理 测试技术
Goedel-Prover:专为自动化数学问题的形式证明生成而设计的 LLM,快速解决形式化数学问题
Goedel-Prover 是一款由普林斯顿大学和清华大学等机构联合推出的开源模型,专注于自动化数学问题的形式证明生成。它通过将自然语言数学问题翻译成形式语言(如 Lean 4),显著提升了数学问题的证明效率。
378 4
Goedel-Prover:专为自动化数学问题的形式证明生成而设计的 LLM,快速解决形式化数学问题
|
7月前
|
人工智能 自然语言处理 算法
AI做数学学会动脑子! UCL等发现LLM程序性知识,推理绝不是背答案
大型语言模型(LLM)在数学推理中的表现一直备受争议。伦敦大学学院等机构的研究发现,LLM可能通过综合程序性知识而非简单检索来解决数学问题。研究分析了7B和35B参数模型在三个简单数学任务中的数据依赖,表明模型更关注解决问题的过程和方法,而非答案本身。这一发现为改进AI系统提供了新思路,但也指出LLM在复杂问题处理上仍存在局限。论文地址:https://arxiv.org/abs/2411.12580
133 2
|
10月前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
182 12
|
10月前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
230 12
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第16天】最新研究显示,大型语言模型(LLMs)在数学问题解决上取得显著进展。谷歌、DeepMind等机构的研究人员通过引入元认知知识,使LLMs能更好地理解和解决数学问题,其在GSM8K和MATH数据集上的准确率分别提升了11.6%和7.52%。这一成果不仅为AI领域开辟了新路径,也为数学教育带来了新的可能性。
156 3

热门文章

最新文章