CMU清华教LLM练成数学高手,LeanSTaR训练模型边思考边证明,登顶新SOTA

简介: 【9月更文挑战第2天】卡内基梅隆大学与清华大学的研究团队开发出名为LeanSTaR的语言模型,该模型结合形式化验证与机器学习技术,在数学证明上取得了重大突破,实现了类似人类数学家的思考和证明能力。这一成果不仅提升了数学证明任务的性能,尤其在复杂推理方面表现突出,还为数学研究和教育提供了有力支持。论文详细内容可访问 https://arxiv.org/abs/2407.10040。

近期,卡内基梅隆大学(CMU)和清华大学的研究人员在人工智能领域取得了一项重要突破,他们成功训练了一个语言大模型(LLM),使其能够像人类数学家一样进行思考和证明。这项研究成果名为LeanSTaR,它通过结合形式化验证和机器学习技术,在数学证明任务上取得了新的SOTA(State-of-the-Art)成绩。

LeanSTaR的创新之处在于它将形式化验证和机器学习技术相结合,从而实现了LLM在数学证明任务上的突破。形式化验证是一种数学方法,用于验证软件或硬件系统的正确性。而机器学习技术则可以帮助模型从大量的数据中学习和提取知识。

在LeanSTaR中,研究人员首先使用形式化验证技术将数学定理转化为逻辑表达式,然后使用机器学习技术训练LLM来理解和处理这些逻辑表达式。通过这种方式,LeanSTaR能够像人类数学家一样进行思考和证明,从而在数学证明任务上取得了出色的表现。

为了评估LeanSTaR的性能,研究人员在多个数学证明数据集上进行了实验。结果显示,LeanSTaR在大多数数据集上都取得了显著的性能提升,尤其是在那些需要复杂推理和证明技巧的任务上。

此外,研究人员还对LeanSTaR进行了定性分析,以了解它在解决数学问题时的思考过程。结果发现,LeanSTaR能够生成清晰、准确的证明过程,并且能够处理一些人类数学家都难以解决的问题。

LeanSTaR的成功不仅在学术上具有重要意义,而且在实际应用中也具有广阔的前景。例如,它可以用于辅助数学家进行定理证明,提高数学研究的效率和准确性。此外,它还可以用于教育领域,帮助学生更好地理解和掌握数学知识。

然而,LeanSTaR也面临一些挑战。首先,它的训练和推理过程相对复杂,需要大量的计算资源和时间。其次,它目前还只能处理一些特定的数学问题,对于更广泛的数学领域还缺乏泛化能力。最后,它还存在一些技术上的局限性,如对逻辑表达式的理解还不够深入等。

论文地址:https://arxiv.org/abs/2407.10040

目录
相关文章
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第17天】近日,谷歌、DeepMind等四大机构联合发布论文,展示大型语言模型(LLMs)在数学问题解决上的显著进步。通过引入元认知知识,研究人员开发了提示引导的交互程序,使LLMs能为数学问题分配合理技能标签并进行语义聚类。实验结果显示,GPT-4在GSM8K和MATH数据集上的准确性分别提升了11.6%和7.52%,展现出巨大潜力。这一成果不仅为AI领域提供了新思路,也为数学教育带来了启示。
32 4
|
13天前
|
机器学习/深度学习 自然语言处理 测试技术
CoT神话破灭,并非LLM标配!三大学府机构联手证实,CoT仅在数学符号推理有用
【10月更文挑战第17天】链式思维(CoT)曾被认为是大型语言模型(LLM)激发推理能力的关键方法,但最新研究显示,CoT仅在数学和符号推理任务中有效,其他任务中效果不明显。加州大学伯克利分校、斯坦福大学和卡内基梅隆大学的联合研究打破了CoT作为LLM标配的神话,为重新评估LLM的推理能力提供了新视角。
24 1
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第16天】最新研究显示,大型语言模型(LLMs)在数学问题解决上取得显著进展。谷歌、DeepMind等机构的研究人员通过引入元认知知识,使LLMs能更好地理解和解决数学问题,其在GSM8K和MATH数据集上的准确率分别提升了11.6%和7.52%。这一成果不仅为AI领域开辟了新路径,也为数学教育带来了新的可能性。
33 3
|
15天前
|
机器学习/深度学习 自然语言处理 测试技术
CoT神话破灭,并非LLM标配!三大学府机构联手证实,CoT仅在数学符号推理有用
【10月更文挑战第16天】近期,加州大学伯克利分校、斯坦福大学和卡内基梅隆大学联合研究发现,链式思维(CoT)方法在数学和符号推理任务中表现优异,但在其他类型任务中效果不明显。这一研究打破了CoT作为大型语言模型(LLM)标配的神话,为重新审视LLM的推理能力提供了新视角。
22 2
|
2月前
|
测试技术
LLM数学性能暴涨168%,微软14人团队力作!合成数据2.0秘诀曝光,智能体生成教学
【9月更文挑战第14天】微软研究团队发布了一篇介绍新型框架"AgentInstruct"的论文,该框架旨在通过自动生成高质量合成数据,推动语言模型发展。AgentInstruct仅需原始数据源即可创建多样化的合成数据,减少人工工作量。研究团队基于此框架构建了含2500万训练对的数据集,展示了其在多种技能教学中的潜力。经微调后的Mistral-7b模型演进为Orca-3,在多个基准测试中显著超越同类模型。尽管如此,AgentInstruct仍面临创建流程耗时及合成数据复杂性不足等问题。论文详情见:https://arxiv.org/pdf/2407.03502
59 2
|
3月前
|
数据采集 自然语言处理 测试技术
CMU&清华新作:让LLM自己合成数据来学习,特定任务性能同样大幅提升
【8月更文挑战第24天】近期研究提出SELF-GUIDE,一种创新方法,旨在通过大型语言模型(LLMs)自动生成特定任务数据并用于自我微调,以克服其在特定任务上的性能局限。SELF-GUIDE分为三个阶段:数据合成、模型微调及性能评估。通过向目标LLM提供适当提示生成高质量合成数据,并用于微调以提升特定任务表现。实验证明,该方法在Natural Instructions V2等多个基准测试中显著提升了分类与生成任务性能。SELF-GUIDE不仅有效提高性能,还具备高数据效率,减少对外部数据依赖。然而,生成数据质量受限于LLM能力,且并非适用于所有任务。
60 4
|
机器学习/深度学习 人工智能 自然语言处理
解决通用LLM「偏科」问题,数学大模型MathGPT要来了!
解决通用LLM「偏科」问题,数学大模型MathGPT要来了!
268 0
|
19天前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
131 2
|
13天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
37 2
|
17天前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。