实现定制化 AutoGPT 实战

简介: 在前期学习基础上,本文指导如何运用AutoGPT完成如生成文件及查询信息并输出到文件等ChatGPT难以实现的任务。首先确保拥有稳定网络、已配置好的AutoGPT环境及可用token。

简介

在前面的学习过程中,已经了解到了 AutoGPT 基本的环境安装操作。接下来就可以基于 AutoGPT 完成一些有趣的任务。通过 AutoGPT 实现我们的需求

环境准备

在正式使用 AutoGPT 之前,确认以下环境没有任何问题:

  1. 稳定的上网环境。
  2. 配置好的 AutoGPT 环境。
  3. 可以使用的 token。

如果还没有配置好环境,请参考章节 AutoGPT 理念与应用 优先完成环境配置。

实践演练

接下来需要使用 AutoGPT 实现几个 ChatGPT 无法实现的需求:

  1. 生成一个文件。
  2. 连接外网,查询信息,并生成 Excel 结果。

注意事项

  1. 提示词要明确一些,并且在过程中,需要不停的确认 Command 是否正确。
  2. 注意避免让 AutoGPT 陷入死循环中。

生成文件

使用过 ChatGPT 的同学应该都知道 ChatGPT 只能生成文本类结果,是无法直接生成文件的。接下来就使用 AutoGPT 进行写入文件操作:

  1. 进入项目,启动虚拟环境:source venvAutoGPT/bin/activate

  2. 执行启动命令:./run.sh

  3. 此时 AutoGPT 提示我们输入信息,输入提示词:生成一个 txt 文件,内容为 霍格沃兹测试开发学社。

  4. 接下来 AutoGPT 会有一个思考的过程,并会将思考过程展示在终端中,提示要进行的下一步操作:

image.png

  1. 当发现 AutoGPT 提示以下信息时,代表我们需要进行选择:
#  输入“y”授权命令,“y -N”运行 N 个连续命令,“n”退出程序,或输入 FileCreatorGPT 的反馈...
  Enter 'y' to authorise command, 'y -N' to run N continuous commands, 'n' to exit program, or enter feedback for FileCreatorGPT...
  1. 如果确定执行 AutoGPT 所提示的命令,输入: y 即可。

  2. 点击y 之后,其实从日志也开始看到对应的提示信息:

image.png

  1. 接下来就可以终止任务,去本地的auto_gpt_workspace目录中看到对应的文件信息。

  2. 打开该文件,发现写入的内容满足需求。

image.png

查询信息,并生成文件

在成功实现生成文件之后,可以实现更进一步的难度。ChatGPT 还具备的一个缺点就是无法连接外网,而 AutoGPT 也补全了这一能力。接下来就使用 AutoGPT 进行数据查询以及生成文件操作。其实整体的流程和上面的生成文件的信息差不多,只是需要修改一下提示词信息。

  1. 进入项目,启动虚拟环境:source venvAutoGPT/bin/activate
  2. 执行启动命令:./run.sh
  3. 此时 AutoGPT 提示我们输入信息,输入提示词:查找 2023 年 9 月 6 日深圳的天气情况,生成一个 shenzhen.txt 文件,将天气结果写入其中。
  4. 根据返回信息,选择对应的命令。最后可以看一下结果,成功生成一个 shenzhen.txt 文件,并且有天气的数据写入。

image.png

其他复杂场景

在使用 AutoGPT 的过程中,AutoGPT 可能会给相关的提示信息,主要包含以下几个字段:

字段名称 作用
ai_goals 表示用户想要完成的目标,最多可以配置 5 个,也可以少于 5 个。
ai_name 本次服务的名称,可以理解为实现你目标的程序是一个机器人,ai_name 就是你给机器人取的名字。
ai_role 主要是为了辅助完成用户目标,对机器人的角色设定,更好的完成用户的任务。
api_budget 是调用 openai 服务接口的预算,单位是美元。

所以需要根据使用的情况,输入适合自己的选项。

AutoGPT Command 原理

其实 AutoGPT 中提示的 Command 其实只是一种由人类编写的程序函数,但它是提供给 GPT 调用的。比如谷歌搜索命令、文件操作命令、python 执行命令等。这一点,从它的底层源码也不难发现。有了这些内容,GPT 就知道它可以如何调用这些人类编写的函数,从而“获得”了网络访问能力和计算能力。

image.png

但是其实 AutoGPT 在火爆过一阵之后,人们,尤其是开发者,也发现其问题所在比如:

  1. 它可能会卡住,或者在一个已经有解任务中不停循环求解。
  2. 花费超出预期的 token 使用量。

越为复杂的场景, AutoGPT 处理起来可能愈发困难。但是 Auto-GPT 的底层原理并不复杂,它是依靠 prompt 实现的。如果作为一个比较有开发功底的人,如果我们想自己定制类似 AutoGPT 的效果,其实是比较容易的。

后面会基于 LangChain 的封装打造一个类似于 AutoGPT 的人工智能应用工具。

相关文章
|
9月前
|
人工智能 Linux API
【AI大模型应用开发】【AutoGPT系列】1. 快速上手 - 运行原生AutoGPT or 利用AutoGPT框架开发自己的Agent
【AI大模型应用开发】【AutoGPT系列】1. 快速上手 - 运行原生AutoGPT or 利用AutoGPT框架开发自己的Agent
325 0
|
人工智能 自然语言处理 JavaScript
AutoGPT:自主完成任务工具
AutoGPT:自主完成任务工具
299 0
|
6月前
|
人工智能 API C#
动手学Avalonia:基于SemanticKernel与硅基流动构建AI聊天与翻译工具
动手学Avalonia:基于SemanticKernel与硅基流动构建AI聊天与翻译工具
121 2
|
SQL 人工智能 运维
ChatGPT软件技术栈解密
ChatGPT 点燃了通用AI浪潮,继农业革命、工业革命、计算机技术革命后,也将可能掀起 AI 技术革命。业界对 ChatGPT 的 AI 算法关注得比较多,但是 OpenAI 已经演变为服务数亿用户的平台服务。近3个月 ChatGPT 的 SLA 大约99%,也就是说平均每天大约有15分钟不可用,整体技术架构和可靠性也备受关注。ChatGPT 没有对外正式分享他们的技术架构,所以很难100%准确知道架构大图,本文尝试从以下:互联网公开信息(twitter、linkedIn等)、OpenAI 最新招聘岗位要求、OpenAI 几次故障报告、Github 代码、绘制了 ChatGPT 的技术架构。
560 2
ChatGPT软件技术栈解密
《认知设计:提升学习体验的艺术》——脚手架
本节书摘来自华章社区《认知设计:提升学习体验的艺术》一书中的脚手架,作者:(美)Julie Dirksen,更多章节内容可以访问云栖社区“华章社区”公众号查看
1354 0
|
4月前
|
人工智能 开发者
大模型工具链之FunctionCall实战教学
【10月更文挑战第15天】在人工智能领域,大模型工具链的构建和应用日益重要。FunctionCall作为一种高效工具链,允许开发者在复杂模型中实现函数调用,提高模型的灵活性和可扩展性。本文探讨了FunctionCall的实际应用,并提供了实战教学,涵盖基本语法、工作原理及复杂功能的实现,如条件语句、循环控制和自定义操作。通过具体示例,展示了如何使用FunctionCall构建清晰、可维护的模型结构。
301 2
|
数据采集 JSON 编解码
猿创征文|11个开发者必备工具,赶快收藏
猿创征文|11个开发者必备工具,赶快收藏

热门文章

最新文章