BladeDISC 深度学习编译器问题之BladeDISC在新硬件支持方面如何解决

简介: BladeDISC 深度学习编译器问题之BladeDISC在新硬件支持方面如何解决

问题一:BladeDISC与TensorRT等推理优化工具相比有哪些优势?


BladeDISC与TensorRT等推理优化工具相比有哪些优势?


参考回答:

BladeDISC相比TensorRT等推理优化工具的优势包括:完备的动态shape语义支持,基于compiler based的技术路径在非标准模型上的性能优势,以及更为灵活的部署模式选择,以插件形式支持前端框架的透明性优势。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/674508



问题二:BladeDISC在新硬件支持方面有哪些特点和优势?


BladeDISC在新硬件支持方面有哪些特点和优势?


参考回答:

BladeDISC在新硬件支持方面具备较强的硬件泛化能力,其基于编译器的技术路径天然对硬件后端有一定的泛化能力,与硬件厂商的技术储备形成互补。在GPGPU和通用CPU体系结构上的储备相对成熟,能够将Nvidia GPU上的技术栈迁移至海光DCU和AMD GPU等体系结构相近的硬件上,解决新硬件适配的性能和可用性问题。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/674509



问题三:BladeDISC在海光DCU上的性能表现如何?


BladeDISC在海光DCU上的性能表现如何?


参考回答:

BladeDISC在海光DCU上的性能表现显著,如在某识别类模型推理中,不同batchsize下性能提升达到2.21X至2.31X;在某检测类模型A推理中,性能提升1.73X至2.1X;在某检测类模型B推理中,性能提升1.04X至1.59X;在某分子动力学模型训练中,性能提升2.0X。这些数字展示了BladeDISC在新硬件上的高效适配和性能优化能力。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/674510



问题四:为什么BladeDISC选择建设开源生态?


为什么BladeDISC选择建设开源生态?


参考回答:

BladeDISC选择建设开源生态主要是出于回馈社区、促进技术交流、获取真实业务场景反馈以及持续完善产品的考虑。我们希望将自身的经验和理解贡献给深度学习编译器和AI System的开发者,同时希望通过开源吸引更多用户反馈,以指导后续的产品迭代方向。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/674511



问题五:BladeDISC的近期Roadmap包括哪些内容?


BladeDISC的近期Roadmap包括哪些内容?


参考回答:

BladeDISC的近期Roadmap包括持续的鲁棒性及性能改进、x86后端补齐计算密集型算子的支持、端到端完整开源x86后端的支持、GPGPU上基于Stitching的大颗粒度自动代码生成、AMD rocm GPU后端的支持,以及PyTorch训练场景的支持。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/674512

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
100 3
|
5月前
|
机器学习/深度学习 编译器 调度
BladeDISC 深度学习编译器问题之BladeDISC支持动态shape语义如何解决
BladeDISC 深度学习编译器问题之BladeDISC支持动态shape语义如何解决
|
5月前
|
机器学习/深度学习 人工智能 前端开发
BladeDISC 深度学习编译器问题之动态shape问题如何解决
BladeDISC 深度学习编译器问题之动态shape问题如何解决
|
5月前
|
机器学习/深度学习 缓存 编译器
BladeDISC 深度学习编译器问题之XLA和TVM等问题如何解决
BladeDISC 深度学习编译器问题之XLA和TVM等问题如何解决
|
5月前
|
机器学习/深度学习 人工智能 前端开发
BladeDISC 深度学习编译器问题之BladeDISC计划发布版本如何解决
BladeDISC 深度学习编译器问题之BladeDISC计划发布版本如何解决
|
5月前
|
机器学习/深度学习 人工智能 前端开发
BladeDISC 深度学习编译器问题之在动态shape下优化整体性能如何解决
BladeDISC 深度学习编译器问题之在动态shape下优化整体性能如何解决
|
3天前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
47 22
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
175 6
|
30天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
162 16
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
102 19