数据平台问题之想提高指标获取效率要如何实现

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 数据平台问题之想提高指标获取效率要如何实现

问题一:数据资产不透明对业务决策有何影响?


数据资产不透明对业务决策有何影响?


参考回答:

数据资产不透明会导致业务决策缺乏有效的数据支持。例如,当业务需要了解DAU或研发效能等关键指标时,如果不知道这些指标的定义、对应的数据表和字段,以及它们之间的关联关系,那么就无法进行有效的数据分析和决策。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/671245



问题二:如何提高指标获取效率?


如何提高指标获取效率?


参考回答:

提高指标获取效率,可以通过建立统一的获取指标与口径的门户,实现自动化的需求分析。这样,运营和研发人员可以快速地找到所需的指标和口径,减少沟通成本和等待时间。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/671246



问题三:如何确保业务决策有有效的工具和方法论支撑?


如何确保业务决策有有效的工具和方法论支撑?


参考回答:

为了确保业务决策有有效的工具和方法论支撑,需要提供丰富的数据应用,如数据可视化、数据分析报告等,并引入有效的数据方法论,如A/B测试、用户行为分析等,帮助业务团队了解如何使用指标、哪些指标能反映真实的业务效果,以及如何通过措施和行为来影响指标。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/671247



问题四:知识生产中的数据自动化生产能力建设包括哪些核心步骤?


知识生产中的数据自动化生产能力建设包括哪些核心步骤?


参考回答:

知识生产中的数据自动化生产能力建设包括五个核心步骤:数仓分层建设(如Kimball维度建模-星型模型)、关系染色(RelationColoring)、维度染色(DimensionColoring)、结果组装(AssembleIndicator)和数据探查(IndicatorResult)。通过这些步骤,可以高效地生成和管理数据指标,提高数据生产的准确性和效率。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/671248



问题五:数仓分层建设在知识生产中有什么作用?


数仓分层建设在知识生产中有什么作用?


参考回答:

数仓分层建设在知识生产中起着基础性作用。通过以明细为粒度进行数据域拆分,并录入相关的维度表,可以构建出清晰、有序的数据架构。这有助于后续的数据处理和分析工作,提高数据的质量和可用性。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/671249

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
存储 算法 大数据
指标类需求问题之在商品开发和运营过程中,减少指标计算以节省人效要怎么操作
指标类需求问题之在商品开发和运营过程中,减少指标计算以节省人效要怎么操作
|
3月前
|
SQL 缓存 数据挖掘
数据平台问题之复合指标生成中维度能力如何处理
数据平台问题之复合指标生成中维度能力如何处理
EMQ
|
6月前
|
数据采集 消息中间件 并行计算
NeuronEX 3.2.0 发布:增强数据采集、分析计算和管理功能
工业边缘网关软件 NeuronEX 3.2.0 版本现已正式发布,本次发布带来了一系列的增强功能和新特性,旨在为用户提供更多数据采集、分析计算以及管理的能力。
EMQ
107 2
NeuronEX 3.2.0 发布:增强数据采集、分析计算和管理功能
|
运维 前端开发 数据可视化
如何快速搭建全链路平台,展示服务拓扑以分析性能?
如何快速搭建全链路平台,展示服务拓扑以分析性能?
153 0
如何快速搭建全链路平台,展示服务拓扑以分析性能?
|
数据采集 存储 供应链
谈谈如何以正确的指标驱动有效的进行数据质量控制
数据质量管理是旨在维持高质量数据的一系列实践,包括从获取数据和实施高级数据流程一直到有效地分发数据的所有过程。
谈谈如何以正确的指标驱动有效的进行数据质量控制
|
存储 数据采集 机器学习/深度学习
数据能力的构建过程
数据能力的构建过程
352 1
|
存储 传感器 SQL
可观测系统存储分析最佳实践
分享在北京云峰会智能运维场的主题
956 0
可观测系统存储分析最佳实践
|
数据采集 存储 数据可视化
如何设计实时数据平台(设计篇)
本文我们探讨了实时数据平台RTDP的相关概念背景和架构设计方案。
带你进入业务分析、设计领域
带你进入业务分析、设计领域 本文通过介绍几本对我印象比较深刻的书籍,来让学习业务分析、设计领域更加容易些(加快找到分析感觉)。 起航 要介绍的第一本应该是比较基础,且跟业务领域比较接近的,我选择《对象模型 策略 模式 应用》。
1340 0