缓存优化利器:5分钟实现 LRU Cache,从原理到代码!

简介: 嗨,大家好!我是你们的技术小伙伴——小米。今天带大家深入了解并手写一个实用的LRU Cache(最近最少使用缓存)。LRU Cache是一种高效的数据淘汰策略,在内存有限的情况下特别有用。本文将从原理讲起,带你一步步用Java实现一个简单的LRU Cache,并探讨其在真实场景中的应用与优化方案,如线程安全、缓存持久化等。无论你是初学者还是有一定经验的开发者,都能从中受益。让我们一起动手,探索LRU Cache的魅力吧!别忘了点赞、转发和收藏哦~



嘿,大家好,我是你们的技术分享小伙伴——小米!今天给大家带来一个超级实用的算法实现——手写LRU Cache。大家在日常开发中,可能经常会遇到需要缓存的场景,而LRU(Least Recently Used)Cache 是一种非常高效的缓存淘汰策略。这篇文章将从理论讲解到代码实现,手把手教你写一个简单的 LRU Cache!

目录

  • LRU Cache 简介
  • 实现思路解析
  • 手写 LRU Cache 代码(Java 实现)
  • 代码讲解与分析
  • 扩展与优化

LRU Cache 简介

LRU(Least Recently Used)算法的核心思想是:最近使用的数据将被保留,最久未使用的数据将被淘汰。这种策略适用于内存有限、但又需要高频访问的数据场景,比如缓存系统、页面置换算法等。

简单来说,LRU Cache 会维护一个固定大小的缓存,每次访问数据时:

  • 如果数据已经在缓存中,将其提升为“最近使用”;
  • 如果数据不在缓存中,则将其插入缓存中;
  • 如果缓存已满,会淘汰最久未使用的数据。

这种机制可以有效避免缓存中存放的数据很久没有被使用,从而浪费内存空间。

实现思路解析

LRU Cache 的核心需求有两个:

  • 快速访问数据: O(1) 时间复杂度。
  • 快速更新访问顺序: 当某个数据被访问时,需要将其提升为最近使用的数据。

要实现以上功能,最直接的想法就是结合 哈希表双向链表

  • 哈希表(HashMap): 提供 O(1) 时间复杂度的数据查找。
  • 双向链表: 提供 O(1) 时间复杂度的插入、删除操作,保证缓存顺序的维护。

双向链表的设计思路是:每次访问或插入数据时,将该数据节点移到链表头部;如果缓存满了,则淘汰链表尾部的节点。

手写 LRU Cache 代码(Java 实现)

好了,废话不多说,直接上代码吧!下面我会用 Java 来手写一个 LRU Cache。

代码讲解与分析

这个手写的 LRU Cache 实现里,我们使用了双向链表来维护缓存的数据顺序,用 HashMap 来实现 O(1) 时间复杂度的查找。

主要实现逻辑:

  • 构造函数:
  • 初始化一个 capacity 表示缓存的容量;
  • 使用 HashMap 存储缓存的数据,键为 K,值为对应的链表节点;
  • 初始化双向链表的 headtail 哨兵节点,方便管理节点的插入与删除。
  • get 方法:
  • HashMap 中查找是否存在该 key
  • 如果存在,调用 moveToHead 方法将该节点移动到链表头部;
  • 如果不存在,返回 null 表示缓存未命中。
  • put 方法:
  • 如果该 key 已经存在于缓存中,更新其值并将其移动到链表头部;
  • 如果该 key 不存在,创建一个新节点,并将其加入链表头部;
  • 如果缓存已满,移除链表尾部的节点(即最久未使用的节点),并从 HashMap 中删除该节点。
  • moveToHead 方法:
  • 先从链表中移除该节点,再将其插入到链表头部,标记为最近使用的节点。
  • removeTail 方法:
  • 直接移除链表的尾部节点,并返回该节点。尾部节点即是最久未使用的节点。

扩展与优化

  • 线程安全:目前这个 LRU Cache 版本是非线程安全的。如果你的应用场景涉及多线程环境,可以考虑在 getput 方法上加锁,或者使用 ConcurrentHashMap 来替代 HashMap,配合 ReentrantLock 保证线程安全。
  • 缓存持久化:在某些应用场景下,你可能需要缓存的持久化存储。可以将 LRUCache 结合 Redis、文件系统等,实现持久化缓存,防止缓存数据丢失。
  • 缓存容量动态调整:可以扩展 LRUCache 的功能,使其支持动态调整缓存容量,方便应对不同的场景需求。

总结

今天我们一起动手实现了一个简易版的 LRU Cache,通过双向链表和哈希表的组合,保证了缓存操作的高效性。希望这篇文章能帮助大家更好地理解 LRU 算法的核心思想,并能应用到实际开发中。

如果大家有任何疑问或者希望我讲解其他技术点,欢迎留言交流哦!我们下期再见啦~

点赞、转发、收藏一波,支持小米继续写作~

小米的小Tips

  • LRU Cache 是面试中的经典问题,不仅考察算法能力,还考察数据结构的运用。
  • 平时多动手写一写,有助于更好地掌握知识点!

期待大家的反馈和建议,我会根据大家的需求推出更多有趣的技术文章!

我是小米,一个喜欢分享技术的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号软件求生,获取更多技术干货!

相关文章
|
3月前
|
SQL 缓存 监控
MySQL缓存机制:查询缓存与缓冲池优化
MySQL缓存机制是提升数据库性能的关键。本文深入解析了MySQL的缓存体系,包括已弃用的查询缓存和核心的InnoDB缓冲池,帮助理解缓存优化原理。通过合理配置,可显著提升数据库性能,甚至达到10倍以上的效果。
|
5月前
|
存储 机器学习/深度学习 缓存
性能最高提升7倍?探究大语言模型推理之缓存优化
本文探讨了大语言模型(LLM)推理缓存优化技术,重点分析了KV Cache、PagedAttention、Prefix Caching及LMCache等关键技术的演进与优化方向。文章介绍了主流推理框架如vLLM和SGLang在提升首Token延迟(TTFT)、平均Token生成时间(TPOT)和吞吐量方面的实现机制,并展望了未来缓存技术的发展趋势。
性能最高提升7倍?探究大语言模型推理之缓存优化
|
2月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
3月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
547 5
|
8月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
1490 0
|
4月前
|
缓存 运维 安全
WordPress安全加速:Cloudflare + Nginx缓存优化方案
本文介绍如何通过Cloudflare与Nginx优化WordPress网站性能,涵盖静态资源长期缓存、动态页面智能缓存及敏感路径保护,提升加载速度并保障后台安全。适用于使用Cloudflare与Nginx环境的WordPress站点。
185 0
|
10月前
|
存储 缓存 小程序
微信小程序数据缓存与本地存储:优化用户体验
本文深入探讨微信小程序的数据缓存与本地存储,介绍其意义、机制及应用场景。通过合理使用内存和本地缓存,可减少网络请求、提升加载速度和用户体验。文中详细讲解了常用缓存API的使用方法,并通过一个新闻列表案例展示了缓存的实际应用。最后提醒开发者注意缓存大小限制、时效性和清理,以确保最佳性能。
|
7月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
2月前
|
缓存 负载均衡 监控
135_负载均衡:Redis缓存 - 提高缓存命中率的配置与最佳实践
在现代大型语言模型(LLM)部署架构中,缓存系统扮演着至关重要的角色。随着LLM应用规模的不断扩大和用户需求的持续增长,如何构建高效、可靠的缓存架构成为系统性能优化的核心挑战。Redis作为业界领先的内存数据库,因其高性能、丰富的数据结构和灵活的配置选项,已成为LLM部署中首选的缓存解决方案。
|
3月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
192 1
Redis专题-实战篇二-商户查询缓存