Python接口自动化测试框架(基础篇)-- 常用数据类型dict

简介: 这篇文章详细介绍了Python中字典(dict)数据类型的使用,包括字典的创建、取值、增删改操作以及内置函数的应用,并探讨了字典的扩展特性,如键的唯一性和不可变性。

前言

接下来的两篇是讲可变数据类型,最后讲dict,从作者使用经验来看,常用的数据类型顺序应该是dict、list、str、tuple、bool(常用作判断条件)、int。<当然还有其他人有不同的看法>

image.png

字典

关键字:dict,符号{},它是可变容器模型且可存任意类型对象;以key:value的形式保存数据,key:唯一,不可迭代的数据类型:int float 布尔值 元组 &value:可以包含任意数据类型:int float str list tuple dict 布尔值

创建字典
  • 代码举例,不同不可变的数据类型为key的情形
dict_1 = {
   
   }  # 表示空字典

dict_2 = {
   
   "a":"b"}

dict_3 = {
   
   (1,):2,1.1:2,True:False}
取值方式
dict_1 = {
   
   "k1":"v1"}

dict_1[key] # 即获取指定key的值

dict_1.get(key) #获取key的值,不存在返回none,较上一个字典取值方法灵活
增删改
  • 增改:赋值运算,如果key不存在,就是新增,反之就是修改
dict_1 = {
   
   }
dict_1["key"] = "value" 

print(dict_1) # 输出:{"key":"value"}
  • dict删除除了del其他都是通过函数实现
dict_1 = {
   
   "k1":"v1","ke":"ve"}

v = dict_1.pop("k1")  # 删除函数,并返回删除key的value

print(v) # 输出:v1

dict_2 = dict_1.popitem()  # 随机删除一组key:value并返回tuple

print(dict_2) # 输出:("ke","ve")

clear() # 清空字典 没有返回值,原dict_1会变成{}

del dict_1[key] 删除指定key
  • update更新函数只能是dict类型
dict1 = {
   
   "k1":"v1"}

dict1.update({
   
   1:2})

print(dict1) # 输出:{'k1': 'v1', 1: 2}
内置的函数
  • items(),其中dict的键值对成为一个元组的元素,返回list形式,但不是list数据类型,而是dict_items
dict1 = {
   
   "ke":"ve","k1":"v1"}

li = dict1.items()

print(li) # 输出:dict_items([{"ke":"ve"},{"k1":"v1"}])
  • values(),获取dict对象的所有value,以list形式,但不是任何类型,而是dict_values
dict1 = {
   
   "ke":"ve","k1":"v1"}

li = dict1.values() 

print(li) # dict_values(['ve', 'v1'])
  • keys(),获取dict对象的所有key,以list形式,但不是任何类型,而是dict_keys
dict_1 = {
   
   "ke":"ve","k1":"v1"}

li = dict_1.keys()

print(li) # 输出:dict_keys(['ke', 'k1'])
  • len() 计算变量的长度,在dict中是统计key的总数
  • has_key(key) 用来判断key是否存在dict对象中,否则返回False
dict1 = {
   
   "k1":"1","a":"b","k1":"2"}

b = dict1.has_key("kk")

# Python 3.X 不支持该方法。
print b # 输出:False
扩展特性

咱们知道dict类型的key是必须唯一,不可变数据类型,如果key出现重复,它只会记住最后一个值


dict1 = {
   
   "k1":"1","a":"b","k1":"2"}

print(dict1) # 输出:{"k1":"2","a":"b"}

总结

在介绍完python常用数据类型之后,各位同学应该总结一下

python数据类型基本操作.png

相关文章
|
2月前
|
搜索推荐 Python
使用Python自动化生成物业通知单
本文介绍如何使用Python结合Pandas和python-docx库自动化生成物业通知单。通过读取Excel数据并填充至Word模板,实现高效准确的通知单批量制作。包括环境准备、代码解析及效果展示,适用于物业管理场景。
88 14
|
2月前
|
Python
自动化微信朋友圈:Python脚本实现自动发布动态
本文介绍如何使用Python脚本自动化发布微信朋友圈动态,节省手动输入的时间。主要依赖`pyautogui`、`time`、`pyperclip`等库,通过模拟鼠标和键盘操作实现自动发布。代码涵盖打开微信、定位朋友圈、准备输入框、模拟打字等功能。虽然该方法能提高效率,但需注意可能违反微信使用条款,存在风险。定期更新脚本以适应微信界面变化也很重要。
213 61
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
76 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
2月前
|
IDE 测试技术 开发工具
10个必备Python调试技巧:从pdb到单元测试的开发效率提升指南
在Python开发中,调试是提升效率的关键技能。本文总结了10个实用的调试方法,涵盖内置调试器pdb、breakpoint()函数、断言机制、logging模块、列表推导式优化、IPython调试、警告机制、IDE调试工具、inspect模块和单元测试框架的应用。通过这些技巧,开发者可以更高效地定位和解决问题,提高代码质量。
337 8
10个必备Python调试技巧:从pdb到单元测试的开发效率提升指南
|
1月前
|
存储 测试技术 API
pytest接口自动化测试框架搭建
通过上述步骤,我们成功搭建了一个基于 `pytest`的接口自动化测试框架。这个框架具备良好的扩展性和可维护性,能够高效地管理和执行API测试。通过封装HTTP请求逻辑、使用 `conftest.py`定义共享资源和前置条件,并利用 `pytest.ini`进行配置管理,可以大幅提高测试的自动化程度和执行效率。希望本文能为您的测试工作提供实用的指导和帮助。
116 15
|
2月前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
572 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
1月前
|
存储 安全 数据可视化
用Python实现简单的任务自动化
本文介绍如何使用Python实现任务自动化,提高效率和准确性。通过三个实用案例展示:1. 使用`smtplib`和`schedule`库自动发送邮件提醒;2. 利用`shutil`和`os`库自动备份文件;3. 借助`requests`库自动下载网页内容。每个案例包含详细代码和解释,并附带注意事项。掌握这些技能有助于个人和企业优化流程、节约成本。
71 3
|
2月前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
100 7
|
2月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
88 4
|
2月前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!