就AI 基础设施的演进与挑战问题之AIGC场景下训练和推理的成本的问题如何解决

简介: 就AI 基础设施的演进与挑战问题之AIGC场景下训练和推理的成本的问题如何解决

问题一:大模型的发展给计算体系结构带来了哪些挑战?

大模型的发展给计算体系结构带来了哪些挑战?


参考回答:

大模型的发展给计算体系结构带来了多重挑战,包括功耗墙、内存墙和通讯墙等。具体来说,在大模型训练层面,用户在模型装载、模型并行、通信等环节会面临各种现实问题;而在大模型推理层面,用户在显存、带宽、量化上面临性能瓶颈。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660909


问题二:阿里云如何帮助用户更好地释放云上性能以助力AIGC应用创新?

阿里云如何帮助用户更好地释放云上性能以助力AIGC应用创新?


参考回答:

阿里云通过提供ECS GPU DeepGPU增强工具包来帮助用户更好地释放云上性能以助力AIGC应用创新。这个工具包可以帮助用户在云上高效地构建AI训练和AI推理基础设施,从而提高算力利用效率。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660910


问题三:使用阿里云ECS DeepGPU后,LLM微调训练场景和Stable Diffusion推理场景的性能有何提升?

使用阿里云ECS DeepGPU后,LLM微调训练场景和Stable Diffusion推理场景的性能有何提升?


参考回答:

使用阿里云ECS DeepGPU后,LLM微调训练场景下的性能最高可以提升80%,而Stable Diffusion推理场景下的性能最高可以提升60%。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660911


问题四:训练一个GPT-3模型大概需要多少计算量和算力?

训练一个GPT-3模型大概需要多少计算量和算力?


参考回答:

训练一个GPT-3模型,其计算量大概在3640 PFLOP*天,对芯片的需求大概需要1024张A100跑一个月的时间。这是一个相当大的千卡规模,换算到成本上也是一笔非常巨大的开销。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660912


问题五:在AIGC场景下,训练和推理的成本如何?

在AIGC场景下,训练和推理的成本如何?


参考回答:

在AIGC场景下,由于模型训练和推理对算力的需求巨大,因此相应的成本也比较高。这包括购买或租用高性能计算资源的费用、电力消耗、维护费用等。此外,由于技术发展迅速,还需要考虑设备更新换代的成本。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660913

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
4天前
|
机器学习/深度学习 人工智能 算法
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
X-AnyLabeling是一款集成了多种深度学习算法的图像标注工具,支持图像和视频的多样化标注样式,适用于多种AI训练场景。本文将详细介绍X-AnyLabeling的功能、技术原理以及如何运行该工具。
31 2
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
|
12天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
64 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
17天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
280 34
|
15天前
|
存储 机器学习/深度学习 PyTorch
【AI系统】推理文件格式
本文介绍了神经网络模型的序列化与反序列化技术,涵盖跨平台通用序列化方法(如 Protobuf 和 FlatBuffers)、模型自定义序列化方法、语言级通用序列化方法等,重点讨论了这两种流行文件格式的特点、使用场景及其在模型部署中的作用。
27 1
【AI系统】推理文件格式
|
3天前
|
存储 人工智能 开发工具
AI场景下的对象存储OSS数据管理实践
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
32 10
|
3天前
|
弹性计算 人工智能 数据管理
AI场景下的对象存储OSS数据管理实践
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
40 10
|
18天前
|
存储 人工智能 监控
【AI系统】推理系统架构
本文深入探讨了AI推理系统架构,特别是以NVIDIA Triton Inference Server为核心,涵盖推理、部署、服务化三大环节。Triton通过高性能、可扩展、多框架支持等特点,提供了一站式的模型服务解决方案。文章还介绍了模型预编排、推理引擎、返回与监控等功能,以及自定义Backend开发和模型生命周期管理的最佳实践,如金丝雀发布和回滚策略,旨在帮助构建高效、可靠的AI应用。
78 15
|
12天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
15天前
|
机器学习/深度学习 人工智能 缓存
【AI系统】推理内存布局
本文介绍了CPU和GPU的基础内存知识,NCHWX内存排布格式,以及MNN推理引擎如何通过数据内存重新排布进行内核优化,特别是针对WinoGrad卷积计算的优化方法,通过NC4HW4数据格式重排,有效利用了SIMD指令集特性,减少了cache miss,提高了计算效率。
35 3