就AI 基础设施的演进与挑战问题之AIGC场景下训练和推理的成本的问题如何解决

简介: 就AI 基础设施的演进与挑战问题之AIGC场景下训练和推理的成本的问题如何解决

问题一:大模型的发展给计算体系结构带来了哪些挑战?

大模型的发展给计算体系结构带来了哪些挑战?


参考回答:

大模型的发展给计算体系结构带来了多重挑战,包括功耗墙、内存墙和通讯墙等。具体来说,在大模型训练层面,用户在模型装载、模型并行、通信等环节会面临各种现实问题;而在大模型推理层面,用户在显存、带宽、量化上面临性能瓶颈。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660909


问题二:阿里云如何帮助用户更好地释放云上性能以助力AIGC应用创新?

阿里云如何帮助用户更好地释放云上性能以助力AIGC应用创新?


参考回答:

阿里云通过提供ECS GPU DeepGPU增强工具包来帮助用户更好地释放云上性能以助力AIGC应用创新。这个工具包可以帮助用户在云上高效地构建AI训练和AI推理基础设施,从而提高算力利用效率。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660910


问题三:使用阿里云ECS DeepGPU后,LLM微调训练场景和Stable Diffusion推理场景的性能有何提升?

使用阿里云ECS DeepGPU后,LLM微调训练场景和Stable Diffusion推理场景的性能有何提升?


参考回答:

使用阿里云ECS DeepGPU后,LLM微调训练场景下的性能最高可以提升80%,而Stable Diffusion推理场景下的性能最高可以提升60%。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660911


问题四:训练一个GPT-3模型大概需要多少计算量和算力?

训练一个GPT-3模型大概需要多少计算量和算力?


参考回答:

训练一个GPT-3模型,其计算量大概在3640 PFLOP*天,对芯片的需求大概需要1024张A100跑一个月的时间。这是一个相当大的千卡规模,换算到成本上也是一笔非常巨大的开销。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660912


问题五:在AIGC场景下,训练和推理的成本如何?

在AIGC场景下,训练和推理的成本如何?


参考回答:

在AIGC场景下,由于模型训练和推理对算力的需求巨大,因此相应的成本也比较高。这包括购买或租用高性能计算资源的费用、电力消耗、维护费用等。此外,由于技术发展迅速,还需要考虑设备更新换代的成本。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660913

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
当无人机遇上Agentic AI:新的应用场景及挑战
本文简介了Agentic AI与AI Agents的不同、Agentic无人机的概念、应用场景、以及所面临的挑战
104 5
当无人机遇上Agentic AI:新的应用场景及挑战
|
2月前
|
存储 人工智能 Kubernetes
AI 场景深度优化!K8s 集群 OSSFS 2.0 存储卷全面升级,高效访问 OSS 数据
阿里云对象存储OSS是一款海量、安全、低成本、高可靠的云存储服务,是用户在云上存储的高性价比选择…
|
29天前
|
传感器 人工智能 自然语言处理
比亚迪座舱接入通义大模型,未来将联合打造更多AI智能座舱场景
比亚迪与阿里云深度合作,将通义大模型应用于智能座舱和营销服务。通过通义万相,腾势推出“AI壁纸”功能;借助通义星尘,实现“心理伴聊”等情感陪伴场景。阿里云Mobile-Agent智能体落地比亚迪座舱,支持复杂语音操作,如查询淘宝物流、订火车票等。该方案基于全视觉解决技术,具有强泛化能力,未来双方将持续拓展更多AI应用。
|
2月前
|
存储 人工智能 运维
MoE大模型迎来“原生战友”:昇腾超节点重构AI基础设施
大模型训练中,MoE架构逐渐成为主流,但也面临资源利用率低、系统稳定性差、通信带宽瓶颈三大挑战。传统AI集群难以满足其需求,而“昇腾超节点”通过自研高速互联协议、软硬件协同调度、全局内存统一编址及系统稳定性提升等创新,实现384张卡协同工作,大幅提升训练效率与推理性能。相比传统方案,昇腾超节点将训练效率提升3倍,推理吞吐提升6倍,助力MoE模型在工业、能源等领域的规模化应用。5月19日的鲲鹏昇腾创享周直播将深度解析相关技术细节。
127 15
|
2月前
|
数据采集 存储 人工智能
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
本文深度聚焦 AI 模型训练效率优化,全面涵盖数据预处理(清洗、归一化、增强)、模型架构(轻量级应用、剪枝与量化)、训练算法与超参数调优(自适应学习率、优化算法)等核心维度。结合自动驾驶、动物图像识别、语音识别等多领域实际案例,佐以丰富且详细的代码示例,深度剖析技术原理与应用技巧,为 AI 从业者呈上极具专业性、可操作性与参考价值的技术宝典,助力高效优化模型训练效率与性能提升。
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
|
1月前
|
人工智能 Cloud Native 数据管理
邀您参加 KubeCon China 2025 分论坛 | 阿里云 AI 基础设施技术沙龙
KubeCon + CloudNativeCon China 2025 将于6月10-11日在香港合和酒店举办,由CNCF与Linux基金会联合主办。阿里云开发者将在大会上分享多个技术议题,涵盖AI模型分发、Argo工作流、Fluid数据管理等领域。大会前还有阿里云AI基础设施技术沙龙,聚焦AI基础设施及云原生技术实战经验。欢迎扫码报名参与!
269 64
|
1月前
|
SQL 存储 人工智能
Quick BI V5.5上线:AI赋能全场景提效,分析决策 “快、准、稳”!
Quick BI 5.5版本应运而生,围绕"AI赋能+全场景提效",助力企业加速释放数据价值。此次升级,不仅让复杂分析"开箱即用",更通过智能工具与场景化能力,助力企业实现从数据洞察到决策落地的全流程闭环。
Quick BI V5.5上线:AI赋能全场景提效,分析决策 “快、准、稳”!
|
2月前
|
存储 人工智能 测试技术
AI 场景深度优化!K8s 集群 OSSFS 2.0 存储卷全面升级,高效访问 OSS 数据
OSSFS 2.0通过轻量化协议设计、协程化技术及FUSE3低级API重构,实现大文件顺序读写与小文件高并发加载的显著提升,在实际测试中表现出高达数十倍的吞吐量增长。适用于机器学习训练、推理等对高带宽低延迟要求严苛的场景,同时支持静态和动态挂载方式,方便用户在ACK集群中部署使用。
266 35
|
1月前
|
人工智能 运维 Kubernetes
倒计时 3 天!邀您共赴维多利亚港精彩纷呈的 AI 基础设施技术盛宴!
6 月 9 日「KubeCon China 2025 分论坛|阿里云 AI 基础设施技术沙龙」火热报名中!席位有限,先到先得。热切期待您的莅临!

热门文章

最新文章