KDD 2024:零样本即可时空预测!港大、华南理工等发布时空大模型UrbanGPT

简介: 【8月更文挑战第21天】UrbanGPT是由香港大学等机构研发的时空大模型,针对城市管理中因数据稀缺导致的预测难题,通过时空依赖编码器与指令调整技术实现强大的泛化能力。此模型能在多种城市任务中无需样本进行准确预测,如交通流量和人群流动等,有效应对数据收集难的问题,在零样本场景下表现优异,为智慧城市管理提供了有力工具。[论文](https://arxiv.org/abs/2403.00813)

近年来,随着城市化进程的加快,城市环境的动态变化日益复杂,对城市管理提出了新的挑战。为了更好地理解和预测城市环境的变化,研究人员提出了一种名为UrbanGPT的时空大模型。

UrbanGPT是由香港大学、华南理工大学等机构的研究人员共同开发的,旨在解决城市环境中的时空预测问题。该模型结合了大型语言模型(LLMs)的成功经验,通过整合时空依赖编码器和指令调整范式,实现了在各种下游城市任务中的出色泛化能力。

时空预测是指对城市环境在时间和空间上的动态变化进行预测和洞察。其目的是预测未来的趋势、模式和事件,包括交通流量、人口流动和犯罪率等多个方面。然而,时空预测面临着许多挑战,其中之一就是数据稀缺问题。

在实际的城市传感场景中,数据稀缺是一个普遍存在的问题。许多现有的时空预测方法严重依赖于大量的标记数据来生成准确的时空表示。然而,由于数据收集和标记的成本较高,许多城市环境中的数据集都存在数据稀缺的问题。

为了解决数据稀缺问题,研究人员提出了UrbanGPT模型。该模型通过将时空依赖编码器与指令调整范式相结合,实现了在各种时空学习场景中的强大泛化能力。

具体而言,UrbanGPT模型包括两个主要组成部分:时空依赖编码器和指令调整范式。时空依赖编码器用于理解时间和空间上的复杂依赖关系,而指令调整范式则用于指导模型在各种下游任务中的学习过程。

通过这种设计,UrbanGPT模型能够更好地理解城市环境中的时空依赖关系,从而在数据稀缺的情况下做出更准确的预测。

为了验证UrbanGPT模型的有效性,研究人员在各种公开数据集上进行了广泛的实验,涵盖了不同的时空预测任务。实验结果表明,UrbanGPT模型在各种任务上都取得了出色的性能,并显著优于现有的基线方法。

这些实验结果证明了UrbanGPT模型在时空预测任务中的潜力,特别是在零样本场景下,即在没有标记数据的情况下进行预测。

然而,尽管UrbanGPT模型在时空预测任务中取得了显著的成果,但仍然存在一些挑战和限制。首先,由于城市环境的复杂性和多样性,时空预测任务本身就具有很高的难度。其次,尽管UrbanGPT模型在数据稀缺的情况下表现出色,但在数据充足的情况下,其性能是否能够与现有的深度学习方法相媲美仍需进一步验证。

论文链接:https://arxiv.org/abs/2403.00813

目录
打赏
0
1
1
1
391
分享
相关文章
1.8B参数,阿里云首个联合DNA、RNA、蛋白质的生物大模型,涵盖16.9W物种
【6月更文挑战第14天】阿里云发布首个集成DNA、RNA和蛋白质数据的生物大模型LucaOne,拥有1.8B参数,涉及16.9万物种。LucaOne通过few-shot learning技术和streamlined downstream architecture实现多生物语言统一处理,提升生物系统理解与分析能力。该模型将加速生物信息学研究,推动生物医学应用,但同时也引发生物数据安全、预测偏差及AI伦理法律等问题的讨论。[论文链接](https://www.biorxiv.org/content/10.1101/2024.05.10.592927v1)
450 3
|
9月前
|
ICLR 2024:跨领域准确进行零样本异常检测,浙大等提出AnomalyCLIP
【5月更文挑战第12天】 浙大、新大和哈佛研究人员合作提出AnomalyCLIP,利用预训练的视觉-语言模型CLIP,学习对象无关文本提示,实现准确的跨领域异常检测。在17个数据集上表现出色,但存在特定领域适应性和计算复杂度问题。研究表明潜力,尤其对工业和医学图像分析。[论文链接](https://arxiv.org/pdf/2310.18961.pdf)
239 1
人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模
人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模
人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模
时序分析五边形战士!清华提出TimesNet:预测、填补、分类、检测全面领先|ICLR 2023(2)
时序分析五边形战士!清华提出TimesNet:预测、填补、分类、检测全面领先|ICLR 2023
1685 0
伯克利开源首个泊车场景下的高清数据集和预测模型,支持目标识别、轨迹预测
伯克利开源首个泊车场景下的高清数据集和预测模型,支持目标识别、轨迹预测
300 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等