SimpleRAG:基于WPF与Semantic Kernel实现的一个简单的RAG应用

简介: SimpleRAG是一款基于WPF与Semantic Kernel的RAG应用,支持OpenAI兼容的AI聊天与文本嵌入模型,演示了RAG技术在提升回答质量上的作用。可通过GitHub获取源码,配置所需模型API密钥后,在VS2022中以.NET 8环境编译运行。应用内置Sqlite数据库存储向量数据,便于离线使用与自定义扩展。如感兴趣,请支持并反馈使用体验。

SimpleRAG介绍

SimpleRAG是基于WPF与Semantic Kernel实现的一个简单的RAG应用,可用于学习与理解如何使用Semantic Kernel构建RAG应用。

GitHub地址:https://github.com/Ming-jiayou/SimpleRAG

主要功能

AI聊天

支持所有兼容OpenAI格式的大语言模型:

image-20240819163701855

文本嵌入

支持所有兼容OpenAI格式的嵌入模型:

image-20240819163900106

简单的RAG回答

简单的RAG回答效果:

image-20240819164221306

对比不使用RAG的回答:

image-20240819164322893

从源码构建

git clone到本地,打开appsettings.example.json文件:

image-20240819164816557

如下所示:

image-20240819164844061

ChatAI用于配置对话模型,Embedding用于配置嵌入模型,TextChunker用于配置文档切片大小。

还是以SiliconCloud为例,只需填入你的api key 并将文件名改为appsettings.json,或者新建一个appsettings.json即可。

配置完成如下所示:

image-20240819165255285

IDE:VS2022

.NET 版本:.NET 8

打开解决方案,项目结构如下所示:

image-20240819165459846

运行程序:

image-20240819165551772

测试AI聊天:

image-20240819165652624

测试嵌入:

image-20240819165803024

使用的是Sqlite保存向量,可以在Debug文件夹下找到这个数据库:

image-20240819165854807

打开该数据库,如下所示:

image-20240819170059576

测试RAG回答:

image-20240819170128226

其他配置

您还可以自由的进行其他配置,比如使用Ollama中的对话模型与嵌入模型用于本地离线场景,配置其他的在线对话模型,使用本地Ollama中的嵌入模型等。

最后

如果对您有所帮助,点个star✨,就是最大的支持😊。

如果您看了这个指南,还是遇到了问题,欢迎通过公众号联系我:

qrcode_for_gh_eb0908859e11_344

相关文章
|
SQL HIVE Python
[Hive]HiveServer2配置
HiveServer2(HS2)是一个服务器接口,能使远程客户端执行Hive查询,并且可以检索结果。HiveServer2是HiveServer1的改进版,HiveServer1已经被废弃。
4511 0
|
机器人 C# 人工智能
智能升级:WPF与人工智能的跨界合作——手把手教你集成聊天机器人,打造互动新体验与个性化服务
【8月更文挑战第31天】聊天机器人已成为现代应用的重要组成部分,提供即时响应、个性化服务及全天候支持。随着AI技术的发展,聊天机器人的功能日益强大,不仅能进行简单问答,还能实现复杂对话管理和情感分析。本文通过具体案例分析,展示了如何在WPF应用中集成聊天机器人,并通过示例代码详细说明其实现过程。使用Microsoft的Bot Framework可以轻松创建并配置聊天机器人,增强应用互动性和用户体验。首先,需在Bot Framework门户中创建机器人项目并编写逻辑。然后,在WPF应用中添加聊天界面,实现与机器人的交互。
480 0
|
5月前
|
传感器 物联网 Linux
Python:蓝牙心率广播设备监测(BLE 心率监测器)技术解析与实现
本文探讨了如何使用 Python 脚本与支持蓝牙低功耗(BLE)心率广播的设备交互以获取实时心率数据。重点分析了 BLE 协议、GATT 服务模型,以及具体方法。此外,还讨论了华为手表等设备的兼容性问题。
854 19
|
12月前
|
人工智能 自然语言处理 自动驾驶
阿里云入选Gartner® AI代码助手魔力象限挑战者象限
Gartner发布业界首个AI代码助手魔力象限,全球共12家企业入围,阿里云,成为唯一进入挑战者象限的中国科技公司。对阿里云而言,此次入选代表了其通义灵码在产品功能和市场应用等方面的优秀表现。
|
API C# 数据库
SemanticKernel/C#:实现接口,接入本地嵌入模型
SemanticKernel/C#:实现接口,接入本地嵌入模型
200 1
|
人工智能 自然语言处理 Java
SemanticKernel:添加插件
SemanticKernel:添加插件
198 0
SemanticKernel:添加插件
|
5G
IEEE 802.11 系列无线标准主要区别
【8月更文挑战第24天】
487 0
|
API C#
SemanticKernel/C#:使用Ollama中的对话模型与嵌入模型用于本地离线场景
SemanticKernel/C#:使用Ollama中的对话模型与嵌入模型用于本地离线场景
364 0
|
自然语言处理 API 数据安全/隐私保护
通过阿里云Milvus和通义千问快速构建基于专属知识库的问答系统
本文展示了如何使用阿里云向量检索 Milvus 版和灵积(Dashscope)提供的通用千问大模型能力,快速构建一个基于专属知识库的问答系统。在示例中,我们通过接入灵积的通义千问 API 及文本嵌入(Embedding)API 来实现 LLM 大模型的相关功能。
通过阿里云Milvus和通义千问快速构建基于专属知识库的问答系统
|
关系型数据库 MySQL 数据库
【MySQL】:超详细MySQL完整安装和配置教程
【MySQL】:超详细MySQL完整安装和配置教程
41864 5