CNN网络编译和训练

简介: 【8月更文挑战第10天】CNN网络编译和训练。

CNN网络编译和训练
代码:

将数据扩充维度,以适应CNN模型

X_train=x_train.reshape(60000,28,28,1)
X_test=x_test.reshape(10000,28,28,1)
model.compile(optimizer=tf.train.AdamOptimizer(),loss="categorical_crossentropy",metrics=['accuracy'])
model.fit(x=X_train,y=y_train,epochs=5,batch_size=128)
输出:
Epoch 1/5
55000/55000 [==============================] - 49s 899us/sample - loss: 0.2107 - acc: 0.9348
Epoch 2/5
55000/55000 [==============================] - 48s 877us/sample - loss: 0.0793 - acc: 0.9763
Epoch 3/5
55000/55000 [==============================] - 52s 938us/sample - loss: 0.0617 - acc: 0.9815
Epoch 4/5
55000/55000 [==============================] - 48s 867us/sample - loss: 0.0501 - acc: 0.9846
Epoch 5/5
55000/55000 [==============================] - 50s 901us/sample - loss: 0.0452 - acc: 0.9862

在训练时,网络训练数据只迭代了5次,可以再增加网络迭代次数,自行尝试看效果如何。

相关文章
|
15天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第28天】本文将深入探讨深度学习领域的核心概念之一——卷积神经网络(CNN),并展示其在图像识别任务中的强大能力。文章首先介绍CNN的基本结构,然后通过一个简单的代码示例来演示如何构建一个基础的CNN模型。接着,我们将讨论CNN如何处理图像数据以及它在图像分类、检测和分割等任务中的应用。最后,文章将指出CNN面临的挑战和未来的发展方向。
|
19天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第24天】本文将带你走进深度学习的神奇世界,特别是卷积神经网络(CNN)这一强大的工具。我们将从CNN的基础概念出发,通过直观的例子和简单的代码片段,探索其在图像识别领域的应用。无论你是深度学习的初学者还是希望深化理解的进阶者,这篇文章都将为你提供有价值的见解。
|
15天前
|
机器学习/深度学习
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
本文分析了神经网络中验证集(测试集)准确率高于训练集准确率的四个可能原因,包括数据集大小和分布不均、模型正则化过度、批处理后准确率计算时机不同,以及训练集预处理过度导致分布变化。
|
3天前
|
机器学习/深度学习 自然语言处理 自动驾驶
CNN的魅力:探索卷积神经网络的无限可能
卷积神经网络(Convolutional Neural Networks, CNN)作为人工智能的重要分支,在图像识别、自然语言处理、医疗诊断及自动驾驶等领域展现了卓越性能。本文将介绍CNN的起源、独特优势及其广泛应用,并通过具体代码示例展示如何使用TensorFlow和Keras构建和训练CNN模型。
|
3天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
15天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第28天】本文深入探讨了深度学习领域中的一个核心概念——卷积神经网络(CNN),并详细解释了其在图像识别任务中的强大应用。从CNN的基本结构出发,我们逐步展开对其工作原理的解析,并通过实际代码示例,展示如何利用CNN进行有效的图像处理和识别。文章旨在为初学者提供一个清晰的学习路径,同时也为有经验的开发者提供一些深入的见解和应用技巧。
29 1
|
14天前
|
机器学习/深度学习 网络安全 TensorFlow
探索操作系统的心脏:内核与用户空间的奥秘云计算与网络安全:技术挑战与未来趋势深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第29天】在数字世界的每一次点击与滑动背后,都隐藏着一个不为人知的故事。这个故事关于操作系统——计算机的灵魂,它如何协调硬件与软件,管理资源,并确保一切运行得井井有条。本文将带你走进操作系统的核心,揭示内核与用户空间的秘密,展现它们如何共同编织出我们日常数字生活的底层结构。通过深入浅出的讲解和代码示例,我们将一同解锁操作系统的神秘面纱,理解其对现代计算的重要性。 【8月更文挑战第29天】本文将深入探讨卷积神经网络(CNN)的基本原理和结构,以及它们如何被广泛应用于图像识别任务中。我们将通过代码示例来展示如何使用Python和TensorFlow库构建一个简单的CNN模型,并训练
|
14天前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
25 0
|
15天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络的构建与训练
【8月更文挑战第28天】本文旨在揭开深度学习的神秘面纱,通过浅显易懂的语言和直观的代码示例,引导读者理解并实践神经网络的构建与训练。我们将从基础概念出发,逐步深入到模型的实际应用,让初学者也能轻松掌握深度学习的核心技能。
|
19天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习中的卷积神经网络(CNN)及其应用
【8月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将了解CNN的基本结构,包括其核心组成部分:卷积层、池化层和全连接层。同时,我们还将探索CNN在图像分类、物体检测和面部识别等任务中的应用,并展示如何通过Python和Keras库实现一个简单的CNN模型。无论你是深度学习的新手,还是希望深化理解CNN的研究者,这篇文章都将为你提供有价值的见解。

热门文章

最新文章