go语言中闭包与匿名函数是什么?

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 本文探讨了Go语言中的匿名函数与闭包。首先介绍了匿名函数的定义与使用方式,包括直接调用、赋值给变量以及作为全局变量的应用。接着深入解析了闭包的概念及其本质,强调闭包能实现状态保持,但也警告其不当使用可能导致复杂的内存管理和运维问题。通过示例展示了如何利用闭包实现累加器功能,并对比了使用结构体字段的方法。最后,通过一个并发场景的示例说明了闭包在Go中处理多协程安全访问共享数据的应用,展示了闭包结合锁机制确保数据一致性的方式。

匿名函数与闭包

注: 文章仅提供对标题内容的直接讨论,并不提供间接相关知识点的讨论。这些间接涉及的知识点后续可能会更新文章。如果喜欢我的描述方式,欢迎提问并请关注我,留意我的更新。或者也可以直接去找搜索引擎求知。

匿名函数

  1. Go支持匿名函数,如果我们某个函数只是希望使用一次,可以使用匿名函数,书写简单更加高效
  2. 匿名函数使用方式:
  1. 定义匿名函数时直接调用,这种方式只能调用一次
  2. 将匿名函数赋给一个变量(该变量就是函数变量了),再通过该变量来调用匿名函数
  1. 将匿名函数给一个全局变量,就可以让匿名函数在整个程序中有效。

go

代码解读

复制代码

func mian(){
	//定义匿名函数:定义的同时调用,匿名函数不需要函数名
	result := func (num1 int,num2 int) int{
		return num1 + num2
	}(10,20)

	fmt.Println(result)

	sub := func (num1 int,num2 int) int{
		return num1 - num2
	}
	result01 := sub(30,70)
	fmt.Println(result01)
}
//同样可以在外部定义,也可以给全局变量

闭包

      (非函数式编程不推荐使用,内存管理复杂且难以运维!个人更推荐采用全局变量、全局结构体的字段等方法进行状态保持)

  1. 什么是闭包
    闭包就是一个匿名函数和被捕获的参数
  2. 闭包的本质
    闭包(Closure)是由函数以及创建该函数的上下文中的其他局部变量一起构成的组合。可以实现被捕获参数的状态保持。
  3. 注意

      闭包中使用的变量/参数会一直保存在内存中,所以会一直使用(可以连续操作)。所以!闭包不可滥用!

go

代码解读

复制代码

//函数功能求和;函数名:getSum 参数为空;返回值为func (int)
//这个返回值函数中的参数是int参数,返回值也是int
func getSum() func (int) int {
	var sum int = 0
	return func (num int) int {
		sum = sum + num
		return sum
	}
}

func main(){
	f := getSum()
	fmt.Println(f(1))
	fmt.Println(f(2))
}

      以上代码中使用闭包的好处:

  1. 状态保持:通过闭包,我们可以将状态(在这里是sum)与操作该状态的函数绑定在一起。这意味着我们可以在不同的调用之间保持和更新状态,而无需使用全局变量。
  2. 简洁性:闭包提供了一种简洁的方式来封装和操作状态,而无需使用传统的类和对象。
  3. 可重用性:由于闭包可以访问其外部函数的变量,所以它可以用于不同的情境。在这个例子中,返回的匿名函数可以用于任何需要累加器(accumulator)的场景。
  4. 代码清晰:使用闭包可以减少外部的依赖和全局变量的使用,从而使代码更加清晰和可维护。(尽管确实代码数少了些,但我个人认为逻辑性变差了,我更重视逻辑)

      如果不使用闭包累加实现方法:

(使用了全局结构体字段的保存方法)

go

代码解读

复制代码

type Accumulator struct {  
	sum int  
}  
  
func (a *Accumulator) Add(num int) int {  
	a.sum += num  
	return a.sum  
}  
  
func main() {  
	acc := &Accumulator{}  
	fmt.Println(acc.Add(1))  
	fmt.Println(acc.Add(2))  
}

      如果直接定义一个累加函数,它的返回值并不会被保存,只有闭包中的值会被全局保存,可以完成全局的任意调用。

go

代码解读

复制代码

func getSum() func (int) int {
	var sum int = 0
	return func (num int) int {
		sum = sum + num
		return sum
	}
}
//闭包:返回的匿名函数+匿名函数以外的变量num

func main(){
	f := getSum()
	fmt.Println(f(1))
	fmt.Println(f(2))

	fmt.Println("----------")

	fmt.Println(getSum01(1))
	fmt.Println(getSum01(2))
	
	fmt.Println("----------")

	fmt.Println(getSum02(0,1))//这里其实可以用函数内变量来做值继承
	fmt.Println(getSum02(1,2))
}

func getSum01(num int) int{
	var sum int = 0
	sum = sum + num
	return sum
}

func getSum02(sum int,num int) int{
	sum = sum + num
	return sum
}

闭包保持状态的原理

      因为闭包中引用的是地址(也可以理解为闭包内捕获的外界变量其实都是它们的指针),因此输出结果取决于这个地址上,输出时存储的是什么值。而不是和普通变量一样是固定的。

css

代码解读

复制代码

func main(){
	var funcSlice []func()
	for i := 0; i < 3; i++ {
		fmt.Println(i) // 输出的本质:0xc0000ac1d0 0xc0000ac1d0 0xc0000ac1d0
		funcSlice = append(funcSlice, func() {
			fmt.Println(i)
		})
	}

	for j := 0; j < 3; j++ {
		funcSlice[j]() // 此时的i所在的地址:0xc0000ac1d0所存储的是最后一次循环后i的值
	}
}

加中介以开辟新地址

      中间增加了一个新的入参作为中介,每次循环到func(i int),都会有一个新的参数创建,每次创建的新参数,地址都不相同,funcSlice中引用的都是一个新的i。

go

代码解读

复制代码

func main(){
	var funcSlice []func()
	for i := 0; i < 3; i++ {
		fmt.Println(i) // 0xc0000ac1d0 0xc0000ac1d0 0xc0000ac1d0
		func(i int){
			funcSlice = append(funcSlice, func() {
				fmt.Println(i)
			})
		}(i)
		
	}

	for j := 0; j < 3; j++ {
		funcSlice[j]() // 0xc0000ac1d0 0xc0000ac1d0 0xc0000ac1d0
	}
}

Go 中闭包的独特使用场景

      众所周知,Go 支持轻量、便捷的协程功能,它可以实现多进程的异步执行。不同协程间对共享数据的异步访问,使用闭包就可以更加的简单高效。如下:

go

代码解读

复制代码

func main() {
	var wg sync.WaitGroup
	var mu sync.Mutex
	counter := 0

	// 创建一个闭包函数,用于安全地递增计数器
	increment := func() {
		mu.Lock()         // 加锁
		defer mu.Unlock() // 确保在函数结束时解锁
		counter++
		fmt.Println("Counter:", counter)
	}

	// 启动多个协程,执行闭包函数
	for i := 0; i < 5; i++ {
		wg.Add(1)
		go func() {
			defer wg.Done() // 确保在协程结束时通知WaitGroup
			increment()
		}()
	}

	// 等待所有协程完成
	wg.Wait()
	fmt.Println("Final Counter:", counter)
}

  • 初始化同步机制
  • var wg sync.WaitGroup:声明一个 WaitGroup,用于等待所有协程完成。
  • var mu sync.Mutex:声明一个互斥锁,用于保护共享数据的访问。
  • 创建闭包函数
  • increment 是一个闭包函数,它捕获了外部的 mu 和 counter 变量。
  • 在闭包内部,使用 mu.Lock() 和 mu.Unlock() 来确保对 counter 的访问是安全的。
  • defer 关键字用于确保在函数返回时解锁,即使发生了 panic。
  • 启动协程
  • 使用 for 循环启动多个协程,每个协程都会执行 increment 闭包。
  • 每个协程启动时,wg.Add(1) 增加 WaitGroup 计数器。
  • 在协程内,使用 defer wg.Done() 确保协程完成时通知 WaitGroup。

      协程的数据访问还会有同步、安全等问题,这些问题的解决需要结合读写锁等其他方法来讲。因此这里不做详细解释,后续我会在写完前置技能点后,进行一次整体的分析、解释。欢迎关注我的账号等待更新。


转载来源:https://juejin.cn/post/7388399895509385268

相关文章
|
6天前
|
存储 JSON 监控
Viper,一个Go语言配置管理神器!
Viper 是一个功能强大的 Go 语言配置管理库,支持从多种来源读取配置,包括文件、环境变量、远程配置中心等。本文详细介绍了 Viper 的核心特性和使用方法,包括从本地 YAML 文件和 Consul 远程配置中心读取配置的示例。Viper 的多来源配置、动态配置和轻松集成特性使其成为管理复杂应用配置的理想选择。
24 2
|
5天前
|
Go 索引
go语言中的循环语句
【11月更文挑战第4天】
13 2
|
5天前
|
Go C++
go语言中的条件语句
【11月更文挑战第4天】
16 2
|
9天前
|
程序员 Go
go语言中的控制结构
【11月更文挑战第3天】
85 58
|
8天前
|
监控 Go API
Go语言在微服务架构中的应用实践
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出,成为构建微服务的理想选择。本文将探讨Go语言在微服务架构中的应用实践,包括Go语言的特性如何适应微服务架构的需求,以及在实际开发中如何利用Go语言的特性来提高服务的性能和可维护性。我们将通过一个具体的案例分析,展示Go语言在微服务开发中的优势,并讨论在实际应用中可能遇到的挑战和解决方案。
|
5天前
|
Go
go语言中的 跳转语句
【11月更文挑战第4天】
13 4
|
5天前
|
JSON 安全 Go
Go语言中使用JWT鉴权、Token刷新完整示例,拿去直接用!
本文介绍了如何在 Go 语言中使用 Gin 框架实现 JWT 用户认证和安全保护。JWT(JSON Web Token)是一种轻量、高效的认证与授权解决方案,特别适合微服务架构。文章详细讲解了 JWT 的基本概念、结构以及如何在 Gin 中生成、解析和刷新 JWT。通过示例代码,展示了如何在实际项目中应用 JWT,确保用户身份验证和数据安全。完整代码可在 GitHub 仓库中查看。
18 1
|
9天前
|
Go 数据处理 API
Go语言在微服务架构中的应用与优势
本文摘要采用问答形式,以期提供更直接的信息获取方式。 Q1: 为什么选择Go语言进行微服务开发? A1: Go语言的并发模型、简洁的语法和高效的编译速度使其成为微服务架构的理想选择。 Q2: Go语言在微服务架构中有哪些优势? A2: 主要优势包括高性能、高并发处理能力、简洁的代码和强大的标准库。 Q3: 文章将如何展示Go语言在微服务中的应用? A3: 通过对比其他语言和展示Go语言在实际项目中的应用案例,来说明其在微服务架构中的优势。
|
9天前
|
Go 数据处理 调度
探索Go语言的并发模型:Goroutines与Channels的协同工作
在现代编程语言中,Go语言以其独特的并发模型脱颖而出。本文将深入探讨Go语言中的Goroutines和Channels,这两种机制如何协同工作以实现高效的并发处理。我们将通过实际代码示例,展示如何在Go程序中创建和管理Goroutines,以及如何使用Channels进行Goroutines之间的通信。此外,本文还将讨论在使用这些并发工具时可能遇到的常见问题及其解决方案,旨在为Go语言开发者提供一个全面的并发编程指南。
|
7天前
|
Go 调度 开发者
探索Go语言中的并发模式:goroutine与channel
在本文中,我们将深入探讨Go语言中的核心并发特性——goroutine和channel。不同于传统的并发模型,Go语言的并发机制以其简洁性和高效性著称。本文将通过实际代码示例,展示如何利用goroutine实现轻量级的并发执行,以及如何通过channel安全地在goroutine之间传递数据。摘要部分将概述这些概念,并提示读者本文将提供哪些具体的技术洞见。