大模型是如何理解人类语言的?

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 大模型是如何理解人类语言的?

在人工智能的前沿领域,大模型正逐渐成为理解人类语言的关键。

那么,大模型是如何理解我们说的话的?别担心,我会用简单直白的话来解释,保证你一看就懂!

1. 把语言转成数字

在计算机的世界里,一切都是数字。为了让计算机能够处理人类语言,我们需要将语言转换成数字形式。这个过程称为向量化。

简单来说,就是给每个单词或短语分配一个唯一的数值表示,图片也可以通过像素和颜色值(红、绿、蓝)的组合来数字化表示。

例如,我们可以使用一个巨大的数字矩阵来表示所有可能的单词,每个单词对应矩阵中的一个向量。这样,当我们说“你好”时,计算机就会识别为这个向量,而不是文字本身。

2. 提取语言的特征

仅仅将语言数字化还不够,计算机需要理解这些数字背后的含义。

特征提取就是这个过程中的关键步骤。

它涉及到从原始数据中提取出有助于理解语言模式的信息。在自然语言处理(NLP)中,这可能包括词性标注、命名实体识别等。这些特征帮助模型理解单词的语法角色和它们在句子中的功能。

3. 理解语言的上下文

人类语言的美妙之处在于其丰富的上下文。

一个词在不同的句子中可能有不同的含义。为了解决这个问题,大模型采用了注意力机制。这种机制允许模型在处理一个词时,能够“关注”到句子中的其他部分,从而更好地理解整个句子的含义。

这就像是在阅读时,我们的大脑会自动关注到与当前理解最相关的信息,而忽略不相关的部分。

4. 预训练学习使其快速成长

大模型通常在大规模的文本数据集上进行预训练,学习语言的通用模式。

这个过程类似于婴儿学习语言,通过大量的观察和模仿来掌握语言的基本规则。

预训练完成后,模型可以通过微调来适应特定的任务,如问答、文本生成或情感分析。微调过程中,模型会在特定任务的数据集上进行额外的训练,以优化其在该任务上的表现。

小结

大模型理解人类语言的过程,就像是一场从数字到语境,再到智能理解的旅程。

随着你对 AI 的了解越来越深,你会发现,这些模型不仅仅是冰冷的代码,它们正在逐渐成为我们理解世界的新工具。未来,它们将在编程、数据分析、甚至是艺术创作等领域发挥重要作用。

最后

一点专业术语都没有,是不是有点不合时宜,那就来一点吧,哈哈 ~

在自然语言处理(NLP)领域,Word2Vec 可以通过计算词与词之间的相似性来理解语言。

卷积神经网络(CNN)在图像处理中的应用可以启发我们如何提取语言特征。

循环神经网络(RNN)可以通过考虑词序来预测下一个词,但这种方法在处理长距离依赖时存在局限性。

2017 年,谷歌发表了一篇名为 “Attention is All You Need” 的论文,提出了 Transformer 模型,它通过注意力机制解决了 RNN 的局限性。

Transformer 模型能够关注整个句子中的所有词,而不是仅仅关注邻近的词,从而更准确地提取语言特征。

从小白程序员的角度,动手实践大模型应用开发,欢迎大家围观,AI 时代,我们一起成长。

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
大模型开发:解释强化学习以及它与监督学习的不同之处。
强化学习(RL)是机器学习的一种,通过智能体与环境交互学习最优策略,以获取最大回报,常用于动态环境如游戏和机器人。与之不同,监督学习(SL)使用有标签的训练数据来预测新数据,适用于如图像分类等稳定问题。两者关键区别在于学习方式和应用场景:RL侧重环境交互和策略优化,适合未知动态环境;SL依赖已知标签数据,适合标签明确的任务。在大模型开发中,两者各有优势,并不断融合创新,推动人工智能发展。
510 2
|
机器学习/深度学习 数据采集 存储
4个维度讲透ChatGPT技术原理,揭开ChatGPT神秘技术黑盒
4个维度讲透ChatGPT技术原理,揭开ChatGPT神秘技术黑盒
|
4月前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
139 13
|
6月前
从代码到哲学:编程中的思维模型与生活智慧
【10月更文挑战第35天】在编程的世界里,代码是构建数字宇宙的基石。本文将通过浅显的语言和实际代码示例,探讨编程思维如何影响我们的日常生活决策,并揭示技术背后的哲学思考。我们将一起探索代码的逻辑结构如何映射到生活的选择中,以及如何通过编程提升问题解决的能力。
101 2
|
8月前
|
算法 搜索推荐
从代码到哲学:探索编程的深层意义
【9月更文挑战第22天】在这篇文章中,我们将深入探讨编程不仅仅是一门技术,更是一种思考方式。通过分析编程的基本原则和实践过程,我们可以发现编程与生活、哲学乃至宇宙规律之间存在着惊人的相似性。文章将带你从代码的字面意义出发,逐步展开到对生活的反思,最终触及到宇宙的本质,揭示出编程活动背后更深层次的意义。
68 5
|
9月前
|
机器学习/深度学习
Sora 原理使用问题之Sora提示词的语义并进行视频生成该如何理解
Sora 原理使用问题之Sora提示词的语义并进行视频生成该如何理解
|
9月前
|
人工智能 测试技术
真相了!大模型解数学题和人类真不一样:死记硬背、知识欠缺明显,GPT-4o表现最佳
【8月更文挑战第15天】WE-MATH基准测试揭示大型多模态模型在解决视觉数学问题上的局限与潜力。研究涵盖6500题,分67概念5层次,评估指标包括知识与泛化不足等。GPT-4o表现最优,但仍存多步推理难题。研究提出知识概念增强策略以改善,为未来AI数学推理指明方向。论文见: https://arxiv.org/pdf/2407.01284
128 1
|
10月前
|
机器学习/深度学习 自然语言处理
大模型概念问题之大模型在生成文本方面有哪些革命性突破
大模型概念问题之大模型在生成文本方面有哪些革命性突破
|
机器学习/深度学习 人工智能 算法
ChatGPT是如何训练得到的?通俗讲解
ChatGPT是如何训练得到的?通俗讲解
|
机器学习/深度学习 自然语言处理 并行计算
【大模型】解释自我注意力的概念及其在LLM表现中的作用
【5月更文挑战第6天】【大模型】解释自我注意力的概念及其在LLM表现中的作用